stepped frequency
Recently Published Documents


TOTAL DOCUMENTS

607
(FIVE YEARS 103)

H-INDEX

24
(FIVE YEARS 5)

2022 ◽  
Vol 131 (2) ◽  
pp. 025103
Author(s):  
Qiaojiao Li ◽  
Meiping Sheng ◽  
Qi Qin ◽  
Yuying Han ◽  
Shuai Wang
Keyword(s):  

Author(s):  
Yibin Liu ◽  
Chunyang Wang ◽  
Jian Gong ◽  
Ming Tan

Abstract By combining multiple input multiple output (MIMO) technology and multiple matched filters with frequency diverse array (FDA), FDA-MIMO radar can be used to achieve two-dimensional target localization with range and angle. In this paper, we propose two FDA-MIMO multi-pulse target localization methods based on tensor decomposition. Based on the canonical polyadic decomposition theory, the signal models of CPD-DP-FDA with double-pulse and CPD-SP-FDA with stepped frequency pulses are established. By analyzing the signal processing procedures of the two schemes, the indicator beampattern used for target localization is obtained. The parameter estimation accuracy of the proposed method is investigated in single target and multiple targets scenarios, and the proposed method is compared with the traditional double-pulse method. The results show that the target localization method based on tensor decomposition can effectively solve the problem of multi-target indication ambiguity. The target positioning effect can be further improved by combining stepped frequency pulses. The derivation of Cramer–Rao Lower Bound (CRLB) demonstrates the superiority of the method.


2021 ◽  
Author(s):  
Christoph Wagner ◽  
Petr Schaffer ◽  
Pouriya Amini Digehsara ◽  
Michael Bärhold ◽  
Dirk Plettemeier ◽  
...  

Abstract Recovering speech in the absence of the acoustic speech signal itself, i.e., silent speech, holds great potential for restoring or enhancing oral communication in those who lost it. Radar is a relatively unexplored silent speech sensing modality, even though it has the advantage of being fully non-invasive. We therefore built a custom stepped frequency continuous wave radar hardware to measure the changes in the transmission spectra during speech between three antennas, located on both cheeks and the chin with a measuring frequency of 100 Hz. We then recorded a command word corpus of 40 phonetically balanced, two-syllable German words and the German digits zero to nine for two individual speakers and evaluated both the speaker-dependent multi-session and inter-session recognition accuracies on this 50-word corpus using a bidirectional long-short term memory network. We obtained recognition accuracies of 99.17 % and 88.87 % for the speaker-dependent multi-session and inter-session accuracy, respectively. These results show that the transmission spectra are very well suited to discriminate individual words from one another, even across different sessions, which is one of the key challenges for fully non-invasive silent speech interfaces.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6673
Author(s):  
Yan Zhang ◽  
Chunmao Yeh ◽  
Zhangfeng Li ◽  
Yaobin Lu ◽  
Xuebin Chen

Stepped-frequency waveform may be used to synthesize a wideband signal with several narrow-band pulses and achieve a high-resolution range profile without increasing the instantaneous bandwidth. Nevertheless, the conventional stepped-frequency waveform is Doppler sensitive, which greatly limits its application to moving targets. For this reason, this paper proposes a waveform design method using a staggered pulse repetition frequency to improve the Doppler tolerance effectively. First, a generalized echo model of the stepped-frequency waveform is constructed in order to analyze the Doppler sensitivity. Then, waveform design is carried out in the stepped-frequency waveform by using a staggered pulse repetition frequency so as to eliminate the high-order phase component that is caused by the target’s velocity. Further, the waveform design method is extended to the sparse stepped-frequency waveform, and we also propose corresponding methods for high-resolution range profile synthesis and motion compensation. Finally, experiments with electromagnetic data verify the high Doppler tolerance of the proposed waveform.


Author(s):  
Agustinus Ribal ◽  
Ali Tamizi ◽  
Ian R. Young

AbstractFour scatterometers, namely: METOP-A, METOP-B, ERS-2 and OCEANSAT-2 were re-calibrated against combined National Data Buoy Center (NDBC) data and aircraft Stepped Frequency Microwave Radiometer (SFMR) data from hurricanes. As a result, continuous calibration relations over the wind speed range 0 to 45 ms-1 were developed. The calibration process uses match-up criteria of 50 km and 30 min for the buoy data. However, due to the strong spatio-temporal wind speed gradients in hurricanes, a method which considers both scatterometer and SFMR data in a storm-centred translating frame of reference is adopted. The results show that although the scatterometer radar cross-section is degraded at high wind speeds, it is still possible to recover wind speed data using the re-calibration process. Data validation between the scatterometers shows that the calibration relations produce consistent results across all scatterometers and reduce the bias and root mean square error compared to previous calibrations. In addition, the results extend the useful range of scatterometer measurements to as high as 45 ms-1.


Author(s):  
Wei Chen ◽  
Wenchong Xie ◽  
Zhaojian Zhang ◽  
Li Zeng ◽  
Yongliang Wang

2021 ◽  
Vol 6 (4) ◽  
pp. 13-20
Author(s):  
Massimo Donelli ◽  
Giuseppe Espa ◽  
Mohammedhusen Manekiya ◽  
Giada Marchi ◽  
Claudio Pascucci

Sign in / Sign up

Export Citation Format

Share Document