Convolutional neural network based approach for static security assessment of power systems

Author(s):  
M. Ramirez-Gonzalez ◽  
F. R. Segundo Sevilla ◽  
P. Korba
Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4446
Author(s):  
Do-In Kim

This paper presents an event identification process in complementary feature extractions via convolutional neural network (CNN)-based event classification. The CNN is a suitable deep learning technique for addressing the two-dimensional power system data as it directly derives information from a measurement signal database instead of modeling transient phenomena, where the measured synchrophasor data in the power systems are allocated by time and space domains. The dynamic signatures in phasor measurement unit (PMU) signals are analyzed based on the starting point of the subtransient signals, as well as the fluctuation signature in the transient signal. For fast decision and protective operations, the use of narrow band time window is recommended to reduce the acquisition delay, where a wide time window provides high accuracy due to the use of large amounts of data. In this study, two separate data preprocessing methods and multichannel CNN structures are constructed to provide validation, as well as the fast decision in successive event conditions. The decision result includes information pertaining to various event types and locations based on various time delays for the protective operation. Finally, this work verifies the event identification method through a case study and analyzes the effects of successive events in addition to classification accuracy.


Author(s):  
Elutunji Buraimoh ◽  
Funso Kehinde Ariyo ◽  
Micheal Omoigui ◽  
Innocent Ewaen Davidson

Electrical power systems are often required to operate at full loading capacity due to ever increasing demand and transmission line contingencies with limited grid expansion. This results in line overload and operating near system limit, thereby threatening system security. Utilization of existing system can be achieved using Flexible Alternating Current Transmission System (FACTS) devices without violating system limits. This research investigation involves static security assessment of a modelled IEEE 30-bus test system in MATLAB/SIMULINK/PSAT environment. The security status with the incorporation of combined Static Var Compensator (SVC), Thyristor Controlled Series Compensator (TCSC) and Interline Power Flow Controller (IPFC) were determined. Prior to this, Contingency Severity Index (CSI) based on Performance Index (PI) of Voltage and Active Power was employed to determine the optimal location of the FACTS devices. Sequential Quadratic Programming (SQP) was applied to determine the optimal sizing/percentage compensation of FACTS. Subsequently, power system with and without the incorporation of FACTS devices were modelled. The ability of the compensated system to withstand credible transmission line contingencies without violating the normal operating limits (bus voltage and line thermal) was examined and presented. The paper presents how combined SVC/TCSC and an IPFC aided the power system to boost its steady state security in the face of possible line contingencies.


Author(s):  
Mostafa Gholami ◽  
Mohammad J. Sanjari ◽  
Mostafa Safari ◽  
Mahdi Akbari ◽  
Mohammadreza R. Kamali

Sign in / Sign up

Export Citation Format

Share Document