scholarly journals Management of Suspected Opioid Overdose With Naloxone by Emergency Medical Services Personnel

Author(s):  
Roger Chou ◽  
P. Todd Korthuis ◽  
Dennis McCarty ◽  
Phillip Coffin ◽  
Jessica Griffin ◽  
...  
2021 ◽  
Vol 136 (1_suppl) ◽  
pp. 54S-61S
Author(s):  
Jonathan Fix ◽  
Amy I. Ising ◽  
Scott K. Proescholdbell ◽  
Dennis M. Falls ◽  
Catherine S. Wolff ◽  
...  

Introduction Linking emergency medical services (EMS) data to emergency department (ED) data enables assessing the continuum of care and evaluating patient outcomes. We developed novel methods to enhance linkage performance and analysis of EMS and ED data for opioid overdose surveillance in North Carolina. Methods We identified data on all EMS encounters in North Carolina during January 1–November 30, 2017, with documented naloxone administration and transportation to the ED. We linked these data with ED visit data in the North Carolina Disease Event Tracking and Epidemiologic Collection Tool. We manually reviewed a subset of data from 12 counties to create a gold standard that informed developing iterative linkage methods using demographic, time, and destination variables. We calculated the proportion of suspected opioid overdose EMS cases that received International Classification of Diseases, Tenth Revision, Clinical Modification diagnosis codes for opioid overdose in the ED. Results We identified 12 088 EMS encounters of patients treated with naloxone and transported to the ED. The 12-county subset included 1781 linkage-eligible EMS encounters, with historical linkage of 65.4% (1165 of 1781) and 1.6% false linkages. Through iterative linkage methods, performance improved to 91.0% (1620 of 1781) with 0.1% false linkages. Among statewide EMS encounters with naloxone administration, the linkage improved from 47.1% to 91.1%. We found diagnosis codes for opioid overdose in the ED among 27.2% of statewide linked records. Practice Implications Through an iterative linkage approach, EMS–ED data linkage performance improved greatly while reducing the number of false linkages. Improved EMS–ED data linkage quality can enhance surveillance activities, inform emergency response practices, and improve quality of care through evaluating initial patient presentations, field interventions, and ultimate diagnoses.


Author(s):  
Anna Vögele ◽  
Michiel Jan van Veelen ◽  
Tomas Dal Cappello ◽  
Marika Falla ◽  
Giada Nicoletto ◽  
...  

Background Helicopter emergency medical services personnel operating in mountainous terrain are frequently exposed to rapid ascents and provide cardiopulmonary resuscitation (CPR) in the field. The aim of the present trial was to investigate the quality of chest compression only (CCO)‐CPR after acute exposure to altitude under repeatable and standardized conditions. Methods and Results Forty‐eight helicopter emergency medical services personnel were divided into 12 groups of 4 participants; each group was assigned to perform 5 minutes of CCO‐CPR on manikins at 2 of 3 altitudes in a randomized controlled single‐blind crossover design (200, 3000, and 5000 m) in a hypobaric chamber. Physiological parameters were continuously monitored; participants rated their performance and effort on visual analog scales. Generalized estimating equations were performed for variables of CPR quality (depth, rate, recoil, and effective chest compressions) and effects of time, altitude, carryover, altitude sequence, sex, qualification, weight, preacclimatization, and interactions were analyzed. Our trial showed a time‐dependent decrease in chest compression depth ( P =0.036) after 20 minutes at altitude; chest compression depth was below the recommended minimum of 50 mm after 60 to 90 seconds (49 [95% CI, 46–52] mm) of CCO‐CPR. Conclusions This trial showed a time‐dependent decrease in CCO‐CPR quality provided by helicopter emergency medical services personnel during acute exposure to altitude, which was not perceived by the providers. Our findings suggest a reevaluation of the CPR guidelines for providers practicing at altitudes of 3000 m and higher. Mechanical CPR devices could be of help in overcoming CCO‐CPR quality decrease in helicopter emergency medical services missions. Registration URL: https://www.clinicaltrials.gov ; Unique identifier: NCT04138446.


2021 ◽  
Vol 136 (1_suppl) ◽  
pp. 62S-71S
Author(s):  
Josie J. Sivaraman ◽  
Scott K. Proescholdbell ◽  
David Ezzell ◽  
Meghan E. Shanahan

Objectives Tracking nonfatal overdoses in the escalating opioid overdose epidemic is important but challenging. The objective of this study was to create an innovative case definition of opioid overdose in North Carolina emergency medical services (EMS) data, with flexible methodology for application to other states’ data. Methods This study used de-identified North Carolina EMS encounter data from 2010-2015 for patients aged >12 years to develop a case definition of opioid overdose using an expert knowledge, rule-based algorithm reflecting whether key variables identified drug use/poisoning or overdose or whether the patient received naloxone. We text mined EMS narratives and applied a machine-learning classification tree model to the text to predict cases of opioid overdose. We trained models on the basis of whether the chief concern identified opioid overdose. Results Using a random sample from the data, we found the positive predictive value of this case definition to be 90.0%, as compared with 82.7% using a previously published case definition. Using our case definition, the number of unresponsive opioid overdoses increased from 3412 in 2010 to 7194 in 2015. The corresponding monthly rate increased by a factor of 1.7 from January 2010 (3.0 per 1000 encounters; n = 261 encounters) to December 2015 (5.1 per 1000 encounters; n = 622 encounters). Among EMS responses for unresponsive opioid overdose, the prevalence of naloxone use was 83%. Conclusions This study demonstrates the potential for using machine learning in combination with a more traditional substantive knowledge algorithm-based approach to create a case definition for opioid overdose in EMS data.


2018 ◽  
Vol 22 (sup1) ◽  
pp. 81-88 ◽  
Author(s):  
Jonathan R. Studnek ◽  
Allison E. Infinger ◽  
Megan L. Renn ◽  
Patricia M. Weiss ◽  
Joseph P. Condle ◽  
...  

EP Europace ◽  
2020 ◽  
Vol 22 (Supplement_1) ◽  
Author(s):  
Y Goto ◽  
A Funada ◽  
T Maeda ◽  
F Okada ◽  
Y Goto

Abstract Funding Acknowledgements Japan Society for the Promotion of Science (KAKENHI Grant No. 18K09999) Background Recent clinical evidence has suggested that the pathophysiology of ventricular fibrillation (VF) cardiac arrest may consist of three time-sensitive phases, namely electrical, circulatory, and metabolic. According to this model of cardiopulmonary resuscitation (CPR), the optimal treatment of cardiac arrest is phase-specific. The potential survival benefit of bystander cardiopulmonary resuscitation (BCPR) depends in part on ischemic time (i.e., the collapse-to-shock interval), with the greatest benefit occurring during the circulatory (second) phase. However, the time boundaries between phases are not precisely defined in the current literature. Purpose The purpose of the present study was to determine the time boundaries of the three-phase time-sensitive model for VF cardiac arrest. Methods We reviewed 20,741 adult patients with initial VF after witnessed out-of-hospital cardiac arrest from a presumed cardiac origin who were included in the All-Japan Utstein-style registry from 2013 to 2017. We excluded patients who underwent bystander defibrillation prior to arrival of emergency medical services personnel. The study end point was 1-month neurologically intact survival (Cerebral Performance Category scale 1 or 2). Collapse-to-shock interval was defined as the time from collapse to first shock delivery by emergency medical services personnel. Patients were divided into two groups, BCPR (n = 11,606, 56.0%) and non-BCPR (n = 9135, 44.0%), according to whether they had received BCPR or not. Results The rate of 1-month neurologically intact survival in the BCPR group was significantly higher than that in the non-BCPR group (27.9% [3237/11,606] vs 17.9% [1632/9135], P < 0.0001; adjusted odds ratio [OR], 1.90; 95% confidence interval [CI], 1.75–2.07; P < 0.0001). Overall, increased collapse-to-shock interval was associated with significantly decreased adjusted odds of 1-month neurologically intact survival (adjusted OR for each 1-minute increase, 0.94; 95% CI, 0.93–0.95; P < 0.0001). In the BCPR group, the ranges of collapse-to-shock interval that were associated with increased adjusted 1-month neurologically intact survival were from 7 minutes (adjusted OR, 1.95; 95% CI, 1.44–2.63; P < 0.0001) to 17 minutes (adjusted OR, 2.82; 95% CI, 1.62–4.91; P = 0.0002) as compared with those in the non-BCPR group. However, the increase in neurologically intact survival of the BCPR group became statistically insignificant as compared with that of the non-BCPR group when the collapse-to-shock interval was outside these ranges. Conclusions The above-mentioned findings suggest that the time boundaries of the three-phase time-sensitive model for VF cardiac arrest may be as follows: electrical phase, from collapse to <7 minutes; circulatory phase, from 7 to 17 minutes; and metabolic phase, >17 minutes onward from collapse.


Sign in / Sign up

Export Citation Format

Share Document