scholarly journals Pendiagnosa Daun Mangga Dengan Model Convolutional Neural Network

2021 ◽  
Vol 6 (2) ◽  
pp. 230
Author(s):  
Tsabitah Ayu ◽  
Vizza Dwi ◽  
Agus Eko Minarno

Pertanian adalah salah satu sektor ekonomi yang terpenting di negara-negara Asia Tenggara. Saat ini, pembangunan ekonomi sangat bergantung pada pertanian. Seperti contoh Mangga, Manga juga merupakan bahan makanan yang dapat diolah menjadi berbagai jenis makanan yang lezat. Karena banyaknya manfaat pada buah ini tak jarang masyarakat ingin menanam pohon mangga untuk dibudidayakan dengan tujuan komersil maupun pribadi. Salah satu masalah utama yang menurunkan kualitas dan kuantitas manufaktur pertanian adalah penyakit tanaman. Oleh karena itu bidang penelitian pertanian menarik para peneliti dan ilmuwan untuk memberikan teknik untuk mengidentifikasi penyakit tanaman dengan menggunakan pengolahan gambar dan visi komputer seperti dalam kertas ini yang menggunaka model Convolutional Neural Network (CNN) untuk mengklasifikasi jenis daun mangga yang sakit (terserang hama) dan sehat berdasarkan bentuk dan tekstur daun. Pada penelitian yang dihasilkan tingkat akurasi sebesar 0,96.

2020 ◽  
Author(s):  
S Kashin ◽  
D Zavyalov ◽  
A Rusakov ◽  
V Khryashchev ◽  
A Lebedev

2018 ◽  
Vol 2018 (9) ◽  
pp. 202-1-202-6 ◽  
Author(s):  
Edward T. Scott ◽  
Sheila S. Hemami

2020 ◽  
Vol 2020 (10) ◽  
pp. 181-1-181-7
Author(s):  
Takahiro Kudo ◽  
Takanori Fujisawa ◽  
Takuro Yamaguchi ◽  
Masaaki Ikehara

Image deconvolution has been an important issue recently. It has two kinds of approaches: non-blind and blind. Non-blind deconvolution is a classic problem of image deblurring, which assumes that the PSF is known and does not change universally in space. Recently, Convolutional Neural Network (CNN) has been used for non-blind deconvolution. Though CNNs can deal with complex changes for unknown images, some CNN-based conventional methods can only handle small PSFs and does not consider the use of large PSFs in the real world. In this paper we propose a non-blind deconvolution framework based on a CNN that can remove large scale ringing in a deblurred image. Our method has three key points. The first is that our network architecture is able to preserve both large and small features in the image. The second is that the training dataset is created to preserve the details. The third is that we extend the images to minimize the effects of large ringing on the image borders. In our experiments, we used three kinds of large PSFs and were able to observe high-precision results from our method both quantitatively and qualitatively.


2018 ◽  
Vol 2018 (10) ◽  
pp. 338-1-338-6
Author(s):  
Patrick Martell ◽  
Vijayan Asari

Author(s):  
Yao Yang ◽  
Yuanjiang Hu ◽  
Lingling Chen ◽  
Xiaoman Liu ◽  
Na Qin ◽  
...  

Author(s):  
Haitao Ma ◽  
Shihong Yue ◽  
Jian Lu ◽  
Sidolla Yem ◽  
Huaxiang Wang

2019 ◽  
Author(s):  
Seoin Back ◽  
Junwoong Yoon ◽  
Nianhan Tian ◽  
Wen Zhong ◽  
Kevin Tran ◽  
...  

We present an application of deep-learning convolutional neural network of atomic surface structures using atomic and Voronoi polyhedra-based neighbor information to predict adsorbate binding energies for the application in catalysis.


Sign in / Sign up

Export Citation Format

Share Document