scholarly journals PRIME NUMBER LAW. DEPENDENCE OF PRIME NUMBERS ON THEIR ORDINAL NUMBERS AND GOLDBACH – EULER BINARY PROBLEM USING COMPUTER

Author(s):  
Sergey Ivanovich Chermidov

The article considers the methods of defining and finding the distribution of composite numbers CN, prime numbers PN, twins of prime numbers Tw and twins of composite numbers TwCN that do not have divisors 2 and 3 in the set of natural numbers - ℕ based on a set of numbers like Θ = {6∙κ ± 1, κ ∈ ℕ}, which is a semigroup in relation to multiplication. There has been proposed a method of obtaining primes by using their ordinal numbers in the set of primes and vice versa, as well as a new algorithm for searching and distributing primes based on a closedness of the elements of the set Θ. It has been shown that a composite number can be presented in the form of products (6x ± 1) (6y ± 1), where x, y ℕ - are positive integer solutions of one of the 4 Diophantine equations: . It has been proved that if there is a parameter λ of prime twins, then none of Diophantine equations P (x, y, λ) = 0 has positive integer solutions. There has been found the new distribution law of prime numbers π(x) in the segment [1 ÷ N]. Any even number is comparable to one of the numbers i.e. . According to the above remainders m, even numbers are divided into 3 types, each type having its own way of representing sums of 2 elements of the set Θ. For any even number in a segment [1 ÷ ν], where ν = (ζ−m) / 6, , there is a parameter of an even number; it is proved that there is always a pair of numbers that are elements of the united sets of parameters of prime twins and parameters of transition numbers , i.e. numbers of the form with the same λ, if the form is a prime number, then the form is a composite number, and vice versa.

Author(s):  
Sergey Ivanovich Chermidov

The article focuses on methods defining and distributing the composite numbers, prime numbers, twins of prime numbers and composite numbers of twins that do not have divisors 2 and 3 in N , based on the set of numbers of type Θ = {6 k ± 1 / kN } where N is the set of all natural numbers, which is a semigroup with respect to multiplication. The calculation the exact quantity of primes in a given interval is given. A method for obtaining prime numbers p ≥ 5 by their ordinal numbers in a set of primes p ≥ 5 is proposed, as well as a new algorithm for finding and distributing prime numbers on the basis of the closeness of the set Θ. The article shows that any composite number n Θ is representable as products (6 x ± 1) (6 y ± 1), where x, yN are the natural solutions of one of the four Diophantine equations P ( x , y , λ) = 0 : 6 × xy ± x ± y - λ = 0. It has been proved that if there is a parameter λ of twins of prime numbers, then none of the Diophantine P ( x , y , λ) = 0 equations has any solutions. A new universal, deterministic, polynomial and independent verification test is provided for the simplicity of the numbers of a species 6 × k ± 1. Algorithms of distributions of parameters of twins of prime numbers and parameters composite numbers of twins are given, they are not divisible by 2 and 3, and variants of proofs for their infinite number are given.


2021 ◽  
Vol 27 (2) ◽  
pp. 88-100
Author(s):  
Qiongzhi Tang ◽  

Using the theory of Pell equation, we study the non-trivial positive integer solutions of the Diophantine equations $z^2=f(x)^2\pm f(x)f(y)+f(y)^2$ for certain polynomials f(x), which mean to construct integral triangles with two sides given by the values of polynomials f(x) and f(y) with the intersection angle $120^\circ$ or $60^\circ$.


2012 ◽  
Vol 08 (02) ◽  
pp. 299-309 ◽  
Author(s):  
OTHMAN ECHI ◽  
NEJIB GHANMI

Let α ∈ ℤ\{0}. A positive integer N is said to be an α-Korselt number (Kα-number, for short) if N ≠ α and N - α is a multiple of p - α for each prime divisor p of N. By the Korselt set of N, we mean the set of all α ∈ ℤ\{0} such that N is a Kα-number; this set will be denoted by [Formula: see text]. Given a squarefree composite number, it is not easy to provide its Korselt set and Korselt weight both theoretically and computationally. The simplest kind of squarefree composite number is the product of two distinct prime numbers. Even for this kind of numbers, the Korselt set is far from being characterized. Let p, q be two distinct prime numbers. This paper sheds some light on [Formula: see text].


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


2021 ◽  
Vol 29 (1) ◽  
pp. 63-68
Author(s):  
Artur Korniłowicz ◽  
Dariusz Surowik

Summary In this paper problems 14, 15, 29, 30, 34, 78, 83, 97, and 116 from [6] are formalized, using the Mizar formalism [1], [2], [3]. Some properties related to the divisibility of prime numbers were proved. It has been shown that the equation of the form p 2 + 1 = q 2 + r 2, where p, q, r are prime numbers, has at least four solutions and it has been proved that at least five primes can be represented as the sum of two fourth powers of integers. We also proved that for at least one positive integer, the sum of the fourth powers of this number and its successor is a composite number. And finally, it has been shown that there are infinitely many odd numbers k greater than zero such that all numbers of the form 22 n + k (n = 1, 2, . . . ) are composite.


Author(s):  
Apoloniusz Tyszka

Let f ( 1 ) = 1 , and let f ( n + 1 ) = 2 2 f ( n ) for every positive integer n. We consider the following hypothesis: if a system S ⊆ {xi · xj = xk : i, j, k ∈ {1, . . . , n}} ∪ {xi + 1 = xk : i, k ∈{1, . . . , n}} has only finitely many solutions in non-negative integers x1, . . . , xn, then each such solution (x1, . . . , xn) satisfies x1, . . . , xn ≤ f (2n). We prove:   (1) the hypothesisimplies that there exists an algorithm which takes as input a Diophantine equation, returns an integer, and this integer is greater than the heights of integer (non-negative integer, positive integer, rational) solutions, if the solution set is finite; (2) the hypothesis implies that there exists an algorithm for listing the Diophantine equations with infinitely many solutions in non-negative integers; (3) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many rational solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has a rational solution; (4) the hypothesis implies that the question whether or not a given Diophantine equation has only finitely many integer solutions is decidable by a single query to an oracle that decides whether or not a given Diophantine equation has an integer solution; (5) the hypothesis implies that if a set M ⊆ N has a finite-fold Diophantine representation, then M is computable.


2020 ◽  
Vol 3 (1) ◽  
pp. 15
Author(s):  
Leomarich F Casinillo

<p>Mersenne primes are specific type of prime numbers that can be derived using the formula <img title="\large M_p=2^{p}-1" src="https://latex.codecogs.com/gif.latex?\large&amp;space;M_p=2^{p}-1" alt="" />, where <img title="\large p" src="https://latex.codecogs.com/gif.latex?\large&amp;space;p" alt="" /> is a prime number. A perfect number is a positive integer of the form <img title="\large P(p)=2^{p-1}(2^{p}-1)" src="https://latex.codecogs.com/gif.latex?\large&amp;space;P(p)=2^{p-1}(2^{p}-1)" alt="" /> where <img title="\large 2^{p}-1" src="https://latex.codecogs.com/gif.latex?\large&amp;space;2^{p}-1" alt="" /> is prime and <img title="\large p" src="https://latex.codecogs.com/gif.latex?\large&amp;space;p" alt="" /> is a Mersenne prime, and that can be written as the sum of its proper divisor, that is, a number that is half the sum of all of its positive divisor. In this note, some concepts relating to Mersenne primes and perfect numbers were revisited. Further, Mersenne primes and perfect numbers were evaluated using triangular numbers. This note also discussed how to partition perfect numbers into odd cubes for odd prime <img title="\large p" src="https://latex.codecogs.com/gif.latex?\large&amp;space;p" alt="" />. Also, the formula that partition perfect numbers in terms of its proper divisors were constructed and determine the number of primes in the partition and discuss some concepts. The results of this study is useful to better understand the mathematical structure of Mersenne primes and perfect numbers.</p>


2021 ◽  
Vol 27 (3) ◽  
pp. 113-118
Author(s):  
Yangcheng Li ◽  

It is well known that the number P_k(x)=\frac{x((k-2)(x-1)+2)}{2} is called the x-th k-gonal number, where x\geq1,k\geq3. Many Diophantine equations about polygonal numbers have been studied. By the theory of Pell equation, we show that if G(k-2)(A(p-2)a^2+2Cab+B(q-2)b^2) is a positive integer but not a perfect square, (2A(p-2)\alpha-(p-4)A + 2C\beta+2D)a + (2B(q-2)\beta-(q-4)B+2C\alpha+2E)b>0, 2G(k-2)\gamma-(k-4)G+2H>0 and the Diophantine equation \[AP_p(x)+BP_q(y)+Cxy+Dx+Ey+F=GP_k(z)+Hz\] has a nonnegative integer solution (\alpha,\beta,\gamma), then it has infinitely many positive integer solutions of the form (at + \alpha,bt + \beta,z), where p, q, k \geq 3 and p,q,k,a,b,t,A,B,G\in\mathbb{Z^+}, C,D,E,F,H\in\mathbb{Z}.


2006 ◽  
Vol 02 (02) ◽  
pp. 195-206 ◽  
Author(s):  
MICHAEL A. BENNETT ◽  
ALAIN TOGBÉ ◽  
P. G. WALSH

Bumby proved that the only positive integer solutions to the quartic Diophantine equation 3X4 - 2Y2 = 1 are (X, Y) = (1, 1),(3, 11). In this paper, we use Thue's hypergeometric method to prove that, for each integer m ≥ 1, the only positive integers solutions to the Diophantine equation (m2 + m + 1)X4 - (m2 + m)Y2 = 1 are (X,Y) = (1, 1),(2m + 1, 4m2 + 4m + 3).


Author(s):  
Ahmet Furkan Gocgen

Integer is either a composite number or a prime number. Therefore, detecting composite numbers is important for solving prime numbers. The study of prime numbers, apart from satisfying human curiosity, can be very important. In this article, the order of composite numbers has been detected. And explained with a simple method and a simple function. And, a method has been developed in which all composite numbers and therefore prime numbers can be determined by using the specified methods, functions and formulas.


Sign in / Sign up

Export Citation Format

Share Document