scholarly journals Identification of Stochastic Process in MATLAB

2019 ◽  
Vol 7 (3) ◽  
Author(s):  
Ojonugwa Adukwu

The system identification toolbox in MATLAB has been successfully used to compare model identification of a first order system subjected to high and low disturbances. The model structures used are FIR, ARX, AMX, OE and BJ. The obtained Model was validated using data generated from the actual process. It shows that the more the variance of the noise input into the system, the more difficult it is for the model identified to reproduce that validation data obtained from process response. Also when the measurement noise has zero mean and low variance, the effect on the steady state gain and other process parameters is negligible.

1961 ◽  
Vol 32 (11) ◽  
pp. 2476-2479 ◽  
Author(s):  
T. K. Caughey ◽  
J. K. Dienes

2016 ◽  
Vol 136 (5) ◽  
pp. 676-682 ◽  
Author(s):  
Akihiro Ishimura ◽  
Masayoshi Nakamoto ◽  
Takuya Kinoshita ◽  
Toru Yamamoto

1991 ◽  
Vol 24 (6) ◽  
pp. 9-16 ◽  
Author(s):  
P. J. Ossenbruggen ◽  
H. Spanjers ◽  
H. Aspegren ◽  
A. Klapwijk

A series of batch tests were performed to study the competition for oxygen by Nitrosomonas and Nitrobacter in the nitrification of ammonia in activated sludge. Oxygen uptake rate (OUR) and dynamic (compartment) models describing the process are proposed and tested. The OUR model is described by a Monod relationship and the biogradation process by a set of first order nonlinear differential equations with variable coefficients. The results show a mechanistic model and ten reaction rates are sufficient to capture the interactive behavior of the nitrification process. Methods for model specification, calibrating, and testing the model and the design of additional experiments are described.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1519
Author(s):  
Mikulas Huba ◽  
Pavol Bistak ◽  
Damir Vrancic ◽  
Katarina Zakova

The article reviews the results of a number of recent papers dealing with the revision of the simplest approaches to the control of first-order time-delayed systems. The concise introductory review is extended by an analysis of two discrete-time approaches to dead-time compensation control of stable, integrating, and unstable first-order dead-time processes including simple diagnostics of the model used and focusing on the possibility of simplified but reliable plant modelling. The first approach, based on the first historically known dead-time compensator (DTC) with possible dead-beat performance, is based on the reconstruction of the actual process variables and the compensation of input disturbances by an extended state observer (ESO). Such solutions play an important role both in a disturbance observer (DOB) based control and in an active disturbance rejection control (ADRC). The second approach considered comes from the Smith predictor with two degrees of freedom, which combines feedforward control with output disturbance reconstruction and compensation by the parallel plant model. It is shown that these two approaches offer advantageous properties in the case of actuator limitations, in contrast to the commonly used PID controllers. However, when applied to integrating and unstable first-order systems, the unconstrained and possibly unobservable output disturbance signal of the second solution must be eliminated from the control loop, due to the hidden structural instability of the Smith predictor-like solutions. The modified solutions, usually referred to as filtered Smith predictor (FSP), then no longer provide a disturbance signal and thus no longer fully fit into the concept of Industry 4.0, which is focused on further optimization, predictive maintenance in dynamic systems, diagnosis, fault detection and fault identification of dynamic processes and forms the basis for the digitalization of smart production. Nevertheless, the detailed analysis of the elimination of the unstable disturbance response mode is also worth mentioning in terms of other possible solutions. The application of both approaches to the control of a thermal process shows almost equivalent quality, but with different dependencies on the tuning parameters used. It is confirmed that a more detailed identification of the controlled process and the resulting higher complexity of the control algorithms does not necessarily lead to an increase in the resulting quality of the transients, which underlines the importance of the simplified plant modelling for practice.


1998 ◽  
Vol 5 (2) ◽  
pp. 121-138
Author(s):  
O. Jokhadze

Abstract Some structural properties as well as a general three-dimensional boundary value problem for normally hyperbolic systems of partial differential equations of first order are studied. A condition is given which enables one to reduce the system under consideration to a first-order system with the spliced principal part. It is shown that the initial problem is correct in a certain class of functions if some conditions are fulfilled.


2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.


Sign in / Sign up

Export Citation Format

Share Document