Diffusion Experiments with a Global Discontinuous Galerkin Shallow-Water Model

2009 ◽  
Vol 137 (10) ◽  
pp. 3339-3350 ◽  
Author(s):  
Ramachandran D. Nair

Abstract A second-order diffusion scheme is developed for the discontinuous Galerkin (DG) global shallow-water model. The shallow-water equations are discretized on the cubed sphere tiled with quadrilateral elements relying on a nonorthogonal curvilinear coordinate system. In the viscous shallow-water model the diffusion terms (viscous fluxes) are approximated with two different approaches: 1) the element-wise localized discretization without considering the interelement contributions and 2) the discretization based on the local discontinuous Galerkin (LDG) method. In the LDG formulation the advection–diffusion equation is solved as a first-order system. All of the curvature terms resulting from the cubed-sphere geometry are incorporated into the first-order system. The effectiveness of each diffusion scheme is studied using the standard shallow-water test cases. The approach of element-wise localized discretization of the diffusion term is easy to implement but found to be less effective, and with relatively high diffusion coefficients, it can adversely affect the solution. The shallow-water tests show that the LDG scheme converges monotonically and that the rate of convergence is dependent on the coefficient of diffusion. Also the LDG scheme successfully eliminates small-scale noise, and the simulated results are smooth and comparable to the reference solution.

2005 ◽  
Vol 133 (4) ◽  
pp. 876-888 ◽  
Author(s):  
Ramachandran D. Nair ◽  
Stephen J. Thomas ◽  
Richard D. Loft

A discontinuous Galerkin shallow water model on the cubed sphere is developed, thereby extending the transport scheme developed by Nair et al. The continuous flux form nonlinear shallow water equations in curvilinear coordinates are employed. The spatial discretization employs a modal basis set consisting of Legendre polynomials. Fluxes along the element boundaries (internal interfaces) are approximated by a Lax–Friedrichs scheme. A third-order total variation diminishing Runge–Kutta scheme is applied for time integration, without any filter or limiter. Numerical results are reported for the standard shallow water test suite. The numerical solutions are very accurate, there are no spurious oscillations in test case 5, and the model conserves mass to machine precision. Although the scheme does not formally conserve global invariants such as total energy and potential enstrophy, conservation of these quantities is better preserved than in existing finite-volume models.


Author(s):  
Claes Eskilsson ◽  
Yaakoub El-Khamra ◽  
David Rideout ◽  
Gabrielle Allen ◽  
Q. Jim Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document