scholarly journals Crew – Spacecraft – Environment Anthropotechnical System in View of Engineering Systems

2018 ◽  
Vol 41 (1) ◽  
pp. 93-117
Author(s):  
Sławomir Augustyn

Abstract The publication describes an example of the anthropotechnical system (crew-spacecraft-environment) in view of engineering systems, which enables to shape their dependability by simultaneously ensuring the safety of space flight operations and more economical operations. Further research on developing the anthropotechnical system should involve the implementation of the elements of artificial intelligence based on expert systems or artificial neural networks.

2020 ◽  
Vol 14 (1) ◽  
pp. 34-42
Author(s):  
A. VAZHYNSKYI ◽  
◽  
S. ZHUKOV ◽  

Approaches and algorithms for processing experimental data and data obtained as a result of using modern means of measuring equipment, selecting diagnostic parameters, pattern recognition, which constitute the methodological basis for developing methods and designing tools for creating a service system for complex industrial facilities based on predicting their performance and residual life are described in submitted article. Along with classical methods, methods based on using the full potential of the modern elemental base of microprocessor technology and the use of artificial neural networks, machine learning, and "big data" are discovered. The given examples can serve as the basis for constructing a methodology for the application of the considered approaches for organizing predictive maintenance of complex industrial equipment. An analytical review of a number of scientific publications showed that the creation of new automated diagnostic systems that can increase fault tolerance and extend the life of sophisticated modern power equipment is extremely relevant. For this, various approaches are applied, based on mathematical models, expert systems, artificial neural networks and other algorithms. Summarizing the results of scientific publications, it can be argued that the implementation of a systematic approach to the organization of repair service at the enterprise requires a comprehensive solution to the following urgent problems: • monitoring is formulated as the task of interrogating sensors and collecting information necessary for further analysis; • diagnostics, it is solved as tasks of identifying informative signs with further detection and classification of failures and anomalies in data sets; • improving the accuracy of algorithms aimed at pattern recognition; • condition forecasting is the task of assessing the current and accumulated readings of monitoring systems for making decisions regarding either a specific element of the complex or the facilities. Thus, modern technology make it possible to arrange arbitrarily complex algorithms. However, to use the full potential that artificial neural networks, expert systems, and classical methods for identifying and diagnosing equipment it is necessary to have a conceptual development of the foundations of building systems for organizing maintenance and repair of complex energy equipment


2019 ◽  
Vol 26 ◽  
pp. 36-46
Author(s):  
S. KONOVALOV ◽  

In the proposed article, various methods of constructing an artificial neural network as one of the components of a hybrid expert system for diagnosis were investigated. A review of foreign literature in recent years was conducted, where hybrid expert systems were considered as an integral part of complex technical systems in the field of security. The advantages and disadvantages of artificial neural networks are listed, and the main problems in creating hybrid expert systems for diagnostics are indicated, proving the relevance of further development of artificial neural networks for hybrid expert systems. The approaches to the analysis of natural language sentences, which are used for the work of hybrid expert systems with artificial neural networks, are considered. A bulletin board is shown, its structure and principle of operation are described. The structure of the bulletin board is divided into levels and sublevels. At sublevels, a confidence factor is applied. The dependence of the values of the confidence factor on the fulfillment of a particular condition is shown. The links between the levels and sublevels of the bulletin board are also described. As an artificial neural network architecture, the «key-threshold» model is used, the rule of neuron operation is shown. In addition, an artificial neural network has the property of training, based on the application of the penalty property, which is able to calculate depending on the accident situation. The behavior of a complex technical system, as well as its faulty states, are modeled using a model that describes the structure and behavior of a given system. To optimize the data of a complex technical system, an evolutionary algorithm is used to minimize the objective function. Solutions to the optimization problem consist of Pareto solution vectors. Optimization and training tasks are solved by using the Hopfield network. In general, a hybrid expert system is described using semantic networks, which consist of vertices and edges. The reference model of a complex technical system is stored in the knowledge base and updated during the acquisition of new knowledge. In an emergency, or about its premise, with the help of neural networks, a search is made for the cause and the control action necessary to eliminate the accident. The considered approaches, interacting with each other, can improve the operation of diagnostic artificial neural networks in the case of emergency management, showing more accurate data in a short time. In addition, the use of such a network for analyzing the state of health, as well as forecasting based on diagnostic data using the example of a complex technical system, is presented.


Author(s):  
Martín Montes Rivera ◽  
Alejandro Padilla ◽  
Juana Canul-Reich ◽  
Julio Ponce

Vision sense is achieved using cells called rods (luminosity) and cones (color). Color perception is required when interacting with educational materials, industrial environments, traffic signals, among others, but colorblind people have difficulties perceiving colors. There are different tests for colorblindness like Ishihara plates test, which have numbers with colors that are confused with colorblindness. Advances in computer sciences produced digital assistants for colorblindness, but there are possibilities to improve them using artificial intelligence because its techniques have exhibited great results when classifying parameters. This chapter proposes the use of artificial neural networks, an artificial intelligence technique, for learning the colors that colorblind people cannot distinguish well by using as input data the Ishihara plates and recoloring the image by increasing its brightness. Results are tested with a real colorblind people who successfully pass the Ishihara test.


Sign in / Sign up

Export Citation Format

Share Document