industrial facilities
Recently Published Documents


TOTAL DOCUMENTS

1177
(FIVE YEARS 506)

H-INDEX

32
(FIVE YEARS 5)

2022 ◽  
Vol 6 (4) ◽  
pp. 340-347
Author(s):  
I. A. Gushchin ◽  
D. V. Sofronov ◽  
V. D. Smolnikov ◽  
I. A. Rymbaev

Environmental pollution creates problems for health of people living in residential areas near pollution sources. Studies aimed at developing methods for investigating the impact of industrial facilities on the air is of interest. The purpose of this work is to analyze the methodology for assessing the risk of exposure of a technosphere object to the atmosphere. It was assumed that the enterprise in emergency mode emits pollutants through the source of emissions at the maximum single concentration of the substance exceeding the maximum permissible concentration. To calculate the impact on a human, various scenarios of an emergency situation are taken into account. These are constructing failure trees and using well-known health risk assessment techniques. The calculation took into account the wind rose for a specific enterprise location and wind speed projections obeying the normal distribution law. These assumptions allowed us to develop a method for calculating the risk of exceeding the concentration of a pollutant at a given point (x, y) during the year. Isolines of surface concentrations were built. Three toxic substances were taken for analysis. The method for calculating the dispersion of emissions of harmful (polluting) substances in the atmospheric airwas used; maps of the dispersion of isolines of pollutants in residential areas were constructed. When solving the inverse problem, emergency emission intensities at which excess of permissible concentrations occurred were determined. In the range of multiplicities exceeding the maximum single maximum permissible concentration from 1 to 5, the dependence was well approximated by a straight line. This technique can be used to determine the risk of diseases caused by carcinogenic and noncarcinogenic substances and minimize the risk of exposure to harmful substances.


2022 ◽  
pp. 240-271
Author(s):  
Dmytro Zubov

Smart assistive devices for blind and visually impaired (B&VI) people are of high interest today since wearable IoT hardware became available for a wide range of users. In the first project, the Raspberry Pi 3 B board measures a distance to the nearest obstacle via ultrasonic sensor HC-SR04 and recognizes human faces by Pi camera, OpenCV library, and Adam Geitgey module. Objects are found by Bluetooth devices of classes 1-3 and iBeacons. Intelligent eHealth agents cooperate with one another in a smart city mesh network via MQTT and BLE protocols. In the second project, B&VIs are supported to play golf. Golf flagsticks have sound marking devices with a buzzer, NodeMcu Lua ESP8266 ESP-12 WiFi board, and WiFi remote control. In the third project, an assistive device supports the orientation of B&VIs by measuring the distance to obstacles via Arduino Uno and HC-SR04. The distance is pronounced through headphones. In the fourth project, the soft-/hardware complex uses Raspberry Pi 3 B and Bytereal iBeacon fingerprinting to uniquely identify the B&VI location at industrial facilities.


2022 ◽  
Vol 354 ◽  
pp. 00009
Author(s):  
Vlad Mihai Pasculescu ◽  
Emilian Ghicioi ◽  
Ligia Ioana Tuhut ◽  
Adrian Bogdan Simon-Marinica ◽  
Dragos Pasculescu

One of the most important tools for improving the OHS level in process industries is represented by risk analysis and assessment. Within industrial units in operation or in the ones which find themselves in the design phase, risk assessment is carried out for determining the hazards which may occur and which may lead to unwanted events, such as hazardous toxic releases, fires and explosions. Accidental releases of toxic/flammable/explosive substances may have serious consequences on workers or on the neighbouring population, therefore the need to establish safety areas based on best practices in the field and on scientific grounds is fully justified. Pressure tanks containing hazardous materials represent one of the most relevant industrial facilities within process plants, being most of the time exposed to hazardous toxic releases, fire and explosion risks. The current study aims to evaluate the consequences and discuss the safety distances required in case of an accidental release of a hazardous material from a tank located within a process plant, using process analysis software tools. Accident scenarios are modelled for comparison purposes with consequence modelling software widely used in safety engineering.


2022 ◽  
Vol 354 ◽  
pp. 00056
Author(s):  
Marius Cornel Șuvar ◽  
Laurențiu Munteanu ◽  
Zoltan Vass

Fire risk is perhaps the most common risk in the category of special emergencies, being a phenomenon that affects important areas of economic and social life, such as buildings, industrial facilities, public spaces, forests, crops, or transportation. Scientific investigation of fires is constituted as a set of organized actions, of technical nature, undertaken to determine the causes that led to the occurrence of fires, the source of ignition, and the circumstances that favored the event. Numerical fire modeling is a widely recognized and accepted tool for analysis in fire research. The results of the investigation carried out on-site are compared with the results of fire evolution obtained by computer simulation, using numerical models based on known input data, to verify different hypotheses regarding the cause of the fire. The advantages over experimental methods are expressed by low costs and substantial time savings. Moreover, several simulations can be run simultaneously, for different scenarios of the event or the analysis of different consequences. The paper presents the main advantages that numerical modeling by FDS methods brings in the technical-scientific expertise of fire, with implications in the data analysis, development, and testing of hypotheses, respectively in the selection process of the final hypothesis. words.


Author(s):  
O. P. Abramova ◽  
◽  
D. S. Filippova ◽  

Taking into account the world and domestic experience of studying the ontogenesis of lithospheric hydrogen a combination of coupled hydrochemical, geochemical and microbiological factors of the accumulation of this natural gas together with methane in the terrigenous formations of the sedimentary cover is justified. It is predicted that various hydrochemical and microbiological processes that cause the development of carbon dioxide and sulfate corrosion of engineering structures, as well as cement of reservoir rocks and tires, can occur together with methane at industrial facilities of underground storage of hydrogen. The risks of reducing the volume of injected hydrogen in underground storage in addition to diffusion losses can be associated with geobiological factors, including the conversion of hydrogen into CH4 and H2S due to microbial activity, chemical interaction of hydrogen with minerals of reservoirs and tires, accompanied by changes in filtration-capacity and geomechanical properties, hydrogen embrittlement of metal structures of ground and underground well equipment. Keywords: geobiology; hydrogen; methane; underground storage; methanogenesis; acetogenesis; sulfate reduction.


Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 155
Author(s):  
Lorena Giordano ◽  
Miriam Benedetti

Waste heat recovery is considered as one of the most promising options to improve the efficiency and sustainability of industrial processes. Even though industrial waste heat is abundantly available and its utilization is not a new concept, the implementation rate of waste-heat recovery interventions in industrial facilities is still low, due to several real or perceived barriers. Foremost challenges are represented by technical, economic, financial and regulatory factors. An additional prominent barrier lies in the lack or incompleteness of information concerning the material and energy flows within the factories, and the types and characteristics of waste heat sources and possible sinks for their internal or external reuse. With the aim to overcome some of the information barriers and increase the willingness of companies to approach waste heat recovery and reuse, a methodology to map waste heat sources and sinks in industrial processes is proposed in this study. The approach here presented combines information from the most relevant publications on the subject and data gathered from the analysis of energy audits carried out by large and energy-intensive enterprises. In order to demonstrate its feasibility, the methodology was applied to the Italian dairy sector, because of its large energy consumption and its enormous potential for the utilization of low-temperature waste heat sources.


2021 ◽  
Vol 12 (1) ◽  
pp. 210
Author(s):  
Pietro Barbaccia ◽  
Leopoldo Lipocelli ◽  
Giancarlo Moschetti ◽  
Nicola Francesca ◽  
Simone De Martino ◽  
...  

This work was aimed to produce an “active” food ice to preserve its microbiological safety over time. With this in mind, ice cubes were processed with the addition of H2O2 to water before freezing. Four food ice productions were performed at the industrial level: one control trial without the addition of H2O2 (0OX) and three experimental trials obtained by adding 4, 8, and 12 mg/L of H2O2 (4OX, 8OX, and 12OX), respectively. After production, all food ice trials were artificially contaminated with 102 CFU/100 mL of water-borne pathogenic bacteria (Escherichia coli ATCC 25922, Enteroccus faecalis ATCC 29212, and Pseudomonas aeruginosa ATCC 27853) inoculated individually. Thawed ice samples were then subjected to microbiological analyses performed by the membrane filtration method and the results indicated that only trial 12OX was able to inactivate all bacteria strains. In conclusion, the addition of 12 mg/L H2O2 represents an optimal cost-effective strategy to preserve the microbiological stability of food ice even when it is improperly handled after production.


2021 ◽  
Vol 9 (4) ◽  
pp. 1696-1707
Author(s):  
Mesut Ulu ◽  
Hasan Şahin

Fire is a type of disaster that has caused significant loss of property and life from past to present. If the necessary measures are not taken, they cause serious property damage, interruption of processes, death and injury. Especially in industrial facilities, the density of flammable, explosive and hazardous chemicals, chimneys, hot surfaces, static electricity and electrical hazards, hot work increases the risk of fire. Therefore, necessary precautions should be taken. The choice of extinguisher device, which includes both passive and active precaution in fire safety, provides the correct intervention in case of possible fire. In case of being a fire, it is necessary to quickly and easily extinguish without damaging the system. For this reason, choosing the right extinguisher is important. In this study, effective criteria were determined by negotiating with supplier companies for the selection of suitable fire extinguishers. After scoring for the criteria, the weights of the criteria were determined by DEMATEL method. With TODIM method, appropriate fire extinguishing agent selection and sequencing were made.


Author(s):  
Е. Ю. Боброва ◽  
И. И. Попов ◽  
М. И. Ганжунцев ◽  
А. Д. Жуков

Постановка задачи. Модернизация систем изоляции инженерных сооружений, в том числе и трубопроводов и промышленных объектов, направлена как на решение общих задач энергоэффективности, так и частных задач теплосбережения и экологической безопасности. В связи с этим разработка и применение связующего, отверждаемого при значительно меньших температурах и не содержащего фенолы, является актуальной задачей. Результаты. Эксперимент, проведенный для оценки влияния на адгезию к различным поверхностям комплексного связующего, отверждаемого в температурном интервале от 80 до 140 С, позволил определить оптимальные расходы латентного компонента и модификатора, которые составили соответственно 3,6-4,0 % и (2,6 ± 0,1) % по массе связующего при оптимальной температуре тепловой обработки 100 С. Расчетом установлено, что при переходе от тепловой обработки при 250 С к тепловой обработке при 100 С прямые затраты тепла снижаются на 60 %, а энергетические затраты на изготовление минераловатных цилиндров на 20-30 %. Выводы. Теоретически обоснована и экспериментально подтверждена возможность применения эпоксидного клея на латентных отвердителях в качестве связующего для высокопористых систем с распределением и отверждением этого связующего на тонких минеральных волокнах. Определены характеристические параметры процесса отверждения, длительность которого уменьшается с повышением температуры и содержания латентного отвердителя. Statement of the problem. The modernization of insulation systems of engineering structures, including pipelines and industrial facilities, is aimed both at solving general problems of energy efficiency, as well as the particular tasks of heat saving and environmental safety. Therefore the development and use of a binder that cures at much lower temperatures and does not contain phenols is an urgent task. Results. An experiment conducted to assess the effect on adhesion to various surfaces of a complex binder cured in the temperature range from 80 to 140 °C allowed us to determine the optimal flow rate of the latent component and modifier, which were 3.6-4.0 % and (2.6 ± 0.1) % respectively by the weight of a binder at an optimal heat treatment temperature of 100 °C. The calculation suggests that when switching from heat treatment at 250 °C to heat treatment at 100 °C, direct heat costs are reduced by 60 %, and energy costs for the manufacture of mineral wool cylinders by 20-30 %. Conclusion. The possibility of using epoxy glue on latent hardeners as a binder for highly porous systems with the distribution and curing of this binder on thin mineral fibers has been justified theoretically and confirmed experimentally. The characteristic parameters of the curing process have been identified whose duration decreases as temperature and the content of latent hardener increase.


Sign in / Sign up

Export Citation Format

Share Document