scholarly journals On the r-dynamic coloring of some fan graph families

2021 ◽  
Vol 29 (3) ◽  
pp. 151-181
Author(s):  
Raúl M. Falcón ◽  
M. Venkatachalam ◽  
S. Gowri ◽  
G. Nandini

Abstract In this paper, we determine the r-dynamic chromatic number of the fan graph Fm,n and determine sharp bounds of this graph invariant for four related families of graphs: The middle graph M(Fm,n ), the total graph T (Fm,n ), the central graph C(Fm,n ) and the line graph L(Fm,n ). In addition, we determine the r-dynamic chromatic number of each one of these four families of graphs in case of being m = 1.

Author(s):  
M. Vinitha ◽  
M. Venkatachalam

In this paper, we investigate the $b$-chromatic number for the theta graph $\theta(s_1, s_2, \cdots, s_n)$, middle graph of theta graph $M(G)$, total graph of theta graph $T(G)$, line graph of theta graph $L(G)$ and the central graph of theta graph $C(G)$.


2018 ◽  
Vol 5 (2) ◽  
pp. 11-15
Author(s):  
Aaresh R.R ◽  
Venkatachalam M ◽  
Deepa T

Dynamic coloring of a graph G is a proper coloring. The chromatic number of a graph G is the minimum k such that G has a dynamic coloring with k colors. In this paper we investigate the dynamic chromatic number for the Central graph, Middle graph, Total graph and Line graph of Web graph Wn denoted by C(Wn), M(Wn), T(Wn) and L(Wn) respectively.


2021 ◽  
Vol 27 (2) ◽  
pp. 191-200
Author(s):  
K. Kalaiselvi ◽  
◽  
N. Mohanapriya ◽  
J. Vernold Vivin ◽  
◽  
...  

An r-dynamic coloring of a graph G is a proper coloring of G such that every vertex in V(G) has neighbors in at least $\min\{d(v),r\}$ different color classes. The r-dynamic chromatic number of graph G denoted as $\chi_r (G)$, is the least k such that G has a coloring. In this paper we obtain the r-dynamic chromatic number of the central graph, middle graph, total graph, line graph, para-line graph and sub-division graph of the comb graph $P_n\odot K_1$ denoted by $C(P_n\odot K_1), M(P_n\odot K_1), T(P_n\odot K_1), L(P_n\odot K_1), P(P_n\odot K_1)$ and $S(P_n\odot K_1)$ respectively by finding the upper bound and lower bound for the r-dynamic chromatic number of the Comb graph.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Musa Demirci ◽  
Sadik Delen ◽  
Ahmet Sinan Cevik ◽  
Ismail Naci Cangul

A derived graph is a graph obtained from a given graph according to some predetermined rules. Two of the most frequently used derived graphs are the line graph and the total graph. Calculating some properties of a derived graph helps to calculate the same properties of the original graph. For this reason, the relations between a graph and its derived graphs are always welcomed. A recently introduced graph index which also acts as a graph invariant called omega is used to obtain such relations for line and total graphs. As an illustrative exercise, omega values and the number of faces of the line and total graphs of some frequently used graph classes are calculated.


Filomat ◽  
2009 ◽  
Vol 23 (3) ◽  
pp. 251-255 ◽  
Author(s):  
Vivin Vernold ◽  
M. Venkatachalam ◽  
Ali Akbar

In this paper, we find the achromatic number of central graph, middle graph and total graph of star graph, denoted by C(K1,n), M(K1,n) and T(K1,n) respectively.


Author(s):  
Mehdi Behzad

Two well-known numbers associated with a graph G (finite and undirected with no loops or multiple lines) are the (point) chromatic and the line chromatic number of G (see (2)). With G there is associated a graph L(G), called the line-graph of G, such that the line chromatic number of G is the same as the chromatic number of L(G). This concept was originated by Whitney (9) in 1932. In 1963, Sedlâček (8) characterized graphs with planar line-graphs. In this note we introduce the notions of the total chromatic number and the total graph of a graph, and characterize graphs with planar total graphs.


2012 ◽  
Vol 43 (2) ◽  
pp. 153-158 ◽  
Author(s):  
Vernold Vivin.J ◽  
Venkatachalam M. ◽  
Kaliraj K.

In this present paper, we have proved for the line graph of double star graph, the harmonious chromatic number and the achromatic number are equal. As a motivation this work can be extended by classifying the different families of graphs for which these two numbers are equal.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Haiying Wang ◽  
Jia-Bao Liu ◽  
Shaohui Wang ◽  
Wei Gao ◽  
Shehnaz Akhter ◽  
...  

Given a graph G, the general sum-connectivity index is defined as χα(G)=∑uv∈E(G)dGu+dGvα, where dG(u) (or dG(v)) denotes the degree of vertex u (or v) in the graph G and α is a real number. In this paper, we obtain the sharp bounds for general sum-connectivity indices of several graph transformations, including the semitotal-point graph, semitotal-line graph, total graph, and eight distinct transformation graphs Guvw, where u,v,w∈+,-.


Author(s):  
Zareen Tasneem ◽  
Farissa Tafannum ◽  
Maksuda Rahman Anti ◽  
Wali Mohammad Abdullah ◽  
Md. Mahbubur Rahman

10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.


Sign in / Sign up

Export Citation Format

Share Document