scholarly journals A Strengthening of Brooks' Theorem for Line Graphs

10.37236/632 ◽  
2011 ◽  
Vol 18 (1) ◽  
Author(s):  
Landon Rabern

We prove that if $G$ is the line graph of a multigraph, then the chromatic number $\chi(G)$ of $G$ is at most $\max\left\{\omega(G), \frac{7\Delta(G) + 10}{8}\right\}$ where $\omega(G)$ and $\Delta(G)$ are the clique number and the maximum degree of $G$, respectively. Thus Brooks' Theorem holds for line graphs of multigraphs in much stronger form. Using similar methods we then prove that if $G$ is the line graph of a multigraph with $\chi(G) \geq \Delta(G) \geq 9$, then $G$ contains a clique on $\Delta(G)$ vertices. Thus the Borodin-Kostochka Conjecture holds for line graphs of multigraphs.

2005 ◽  
Vol DMTCS Proceedings vol. AE,... (Proceedings) ◽  
Author(s):  
Andrew D. King ◽  
Bruce A. Reed ◽  
Adrian R. Vetta

International audience It was conjectured by Reed [reed98conjecture] that for any graph $G$, the graph's chromatic number $χ (G)$ is bounded above by $\lceil Δ (G) +1 + ω (G) / 2\rceil$ , where $Δ (G)$ and $ω (G)$ are the maximum degree and clique number of $G$, respectively. In this paper we prove that this bound holds if $G$ is the line graph of a multigraph. The proof yields a polynomial time algorithm that takes a line graph $G$ and produces a colouring that achieves our bound.


2019 ◽  
Vol 62 (1) ◽  
pp. 23-35
Author(s):  
Wouter Cames van Batenburg ◽  
Ross J. Kang

AbstractLet $G$ be a claw-free graph on $n$ vertices with clique number $\unicode[STIX]{x1D714}$, and consider the chromatic number $\unicode[STIX]{x1D712}(G^{2})$ of the square $G^{2}$ of $G$. Writing $\unicode[STIX]{x1D712}_{s}^{\prime }(d)$ for the supremum of $\unicode[STIX]{x1D712}(L^{2})$ over the line graphs $L$ of simple graphs of maximum degree at most $d$, we prove that $\unicode[STIX]{x1D712}(G^{2})\leqslant \unicode[STIX]{x1D712}_{s}^{\prime }(\unicode[STIX]{x1D714})$ for $\unicode[STIX]{x1D714}\in \{3,4\}$. For $\unicode[STIX]{x1D714}=3$, this implies the sharp bound $\unicode[STIX]{x1D712}(G^{2})\leqslant 10$. For $\unicode[STIX]{x1D714}=4$, this implies $\unicode[STIX]{x1D712}(G^{2})\leqslant 22$, which is within 2 of the conjectured best bound. This work is motivated by a strengthened form of a conjecture of Erdős and Nešetřil.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Nihat Akgunes ◽  
Yasar Nacaroglu ◽  
Sedat Pak

The concept of monogenic semigroup graphs Γ S M is firstly introduced by Das et al. (2013) based on zero divisor graphs. In this study, we mainly discuss the some graph properties over the line graph L Γ S M of Γ S M . In detail, we prove the existence of graph parameters, namely, radius, diameter, girth, maximum degree, minimum degree, chromatic number, clique number, and domination number over L Γ S M .


Algorithms ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 161 ◽  
Author(s):  
R. Vignesh ◽  
J. Geetha ◽  
K. Somasundaram

A total coloring of a graph G is an assignment of colors to the elements of the graph G such that no two adjacent or incident elements receive the same color. The total chromatic number of a graph G, denoted by χ ′ ′ ( G ) , is the minimum number of colors that suffice in a total coloring. Behzad and Vizing conjectured that for any graph G, Δ ( G ) + 1 ≤ χ ′ ′ ( G ) ≤ Δ ( G ) + 2 , where Δ ( G ) is the maximum degree of G. In this paper, we prove the total coloring conjecture for certain classes of graphs of deleted lexicographic product, line graph and double graph.


10.37236/4626 ◽  
2015 ◽  
Vol 22 (2) ◽  
Author(s):  
Daniel W. Cranston ◽  
Landon Rabern

We prove bounds on the chromatic number $\chi$ of a vertex-transitive graph in terms of its clique number $\omega$ and maximum degree $\Delta$. We conjecture that every vertex-transitive graph satisfies $\chi \le \max \{\omega, \left\lceil\frac{5\Delta + 3}{6}\right\rceil\}$, and we prove results supporting this conjecture. Finally, for vertex-transitive graphs with $\Delta \ge 13$ we prove the Borodin–Kostochka conjecture, i.e., $\chi\le\max\{\omega,\Delta-1\}$.


2019 ◽  
Vol 71 (1) ◽  
pp. 113-129 ◽  
Author(s):  
Rémi de Joannis de Verclos ◽  
Ross J. Kang ◽  
Lucas Pastor

AbstractIs there some absolute $\unicode[STIX]{x1D700}>0$ such that for any claw-free graph $G$, the chromatic number of the square of $G$ satisfies $\unicode[STIX]{x1D712}(G^{2})\leqslant (2-\unicode[STIX]{x1D700})\unicode[STIX]{x1D714}(G)^{2}$, where $\unicode[STIX]{x1D714}(G)$ is the clique number of $G$? Erdős and Nešetřil asked this question for the specific case where $G$ is the line graph of a simple graph, and this was answered in the affirmative by Molloy and Reed. We show that the answer to the more general question is also yes, and, moreover, that it essentially reduces to the original question of Erdős and Nešetřil.


2016 ◽  
Vol 16 (09) ◽  
pp. 1750173 ◽  
Author(s):  
R. Nikandish ◽  
H. R. Maimani ◽  
A. Khaksari

A graph is called weakly perfect if its vertex chromatic number equals its clique number. Let [Formula: see text] be a vector space over a field [Formula: see text] with [Formula: see text] as a basis and [Formula: see text] as the null vector. The non-zero component graph of [Formula: see text] with respect to [Formula: see text], denoted by [Formula: see text], is a graph with the vertex set [Formula: see text] and two distinct vertices [Formula: see text] and [Formula: see text] are adjacent if and only if there exists at least one [Formula: see text] along which both [Formula: see text] and [Formula: see text] have non-zero components. In this paper, it is shown that [Formula: see text] is a weakly perfect graph. Also, we give an explicit formula for the vertex chromatic number of [Formula: see text]. Furthermore, it is proved that the edge chromatic number of [Formula: see text] is equal to the maximum degree of [Formula: see text].


Author(s):  
Mehdi Behzad

Two well-known numbers associated with a graph G (finite and undirected with no loops or multiple lines) are the (point) chromatic and the line chromatic number of G (see (2)). With G there is associated a graph L(G), called the line-graph of G, such that the line chromatic number of G is the same as the chromatic number of L(G). This concept was originated by Whitney (9) in 1932. In 1963, Sedlâček (8) characterized graphs with planar line-graphs. In this note we introduce the notions of the total chromatic number and the total graph of a graph, and characterize graphs with planar total graphs.


Author(s):  
MAHDI EBRAHIMI

Abstract For a finite group G, let $\Delta (G)$ denote the character graph built on the set of degrees of the irreducible complex characters of G. A perfect graph is a graph $\Gamma $ in which the chromatic number of every induced subgraph $\Delta $ of $\Gamma $ equals the clique number of $\Delta $ . We show that the character graph $\Delta (G)$ of a finite group G is always a perfect graph. We also prove that the chromatic number of the complement of $\Delta (G)$ is at most three.


Sign in / Sign up

Export Citation Format

Share Document