On the secant varieties to the osculating variety of a Veronese surface

2003 ◽  
Vol 1 (3) ◽  
pp. 315-326 ◽  
Author(s):  
E. Ballico ◽  
C. Fontanari

2017 ◽  
Vol 28 (02) ◽  
pp. 1750011 ◽  
Author(s):  
Cristian Martinez

Let [Formula: see text] denote the [Formula: see text]-uple Veronese surface. After studying some general aspects of the wall-crossing phenomena for stability conditions on surfaces, we are able to describe a sequence of flips of the secant varieties of [Formula: see text] by embedding the blow-up [Formula: see text] into a suitable moduli space of Bridgeland semistable objects on [Formula: see text].



Author(s):  
Vincenzo Di Gennaro

AbstractLet $$(S,{\mathcal {L}})$$ ( S , L ) be a smooth, irreducible, projective, complex surface, polarized by a very ample line bundle $${\mathcal {L}}$$ L of degree $$d > 25$$ d > 25 . In this paper we prove that $$\chi (\mathcal O_S)\ge -\frac{1}{8}d(d-6)$$ χ ( O S ) ≥ - 1 8 d ( d - 6 ) . The bound is sharp, and $$\chi ({\mathcal {O}}_S)=-\frac{1}{8}d(d-6)$$ χ ( O S ) = - 1 8 d ( d - 6 ) if and only if d is even, the linear system $$|H^0(S,{\mathcal {L}})|$$ | H 0 ( S , L ) | embeds S in a smooth rational normal scroll $$T\subset {\mathbb {P}}^5$$ T ⊂ P 5 of dimension 3, and here, as a divisor, S is linearly equivalent to $$\frac{d}{2}Q$$ d 2 Q , where Q is a quadric on T. Moreover, this is equivalent to the fact that a general hyperplane section $$H\in |H^0(S,{\mathcal {L}})|$$ H ∈ | H 0 ( S , L ) | of S is the projection of a curve C contained in the Veronese surface $$V\subseteq {\mathbb {P}}^5$$ V ⊆ P 5 , from a point $$x\in V\backslash C$$ x ∈ V \ C .





2016 ◽  
Vol 27 (07) ◽  
pp. 1640002 ◽  
Author(s):  
Insong Choe ◽  
George H. Hitching

Let [Formula: see text] be the Grassmann bundle of two-planes associated to a general bundle [Formula: see text] over a curve [Formula: see text]. We prove that an embedding of [Formula: see text] by a certain twist of the relative Plücker map is not secant defective. This yields a new and more geometric proof of the Hirschowitz-type bound on the isotropic Segre invariant for maximal isotropic sub-bundles of orthogonal bundles over [Formula: see text], analogous to those given for vector bundles and symplectic bundles in [I. Choe and G. H. Hitching, Secant varieties and Hirschowitz bound on vector bundles over a curve, Manuscripta Math. 133 (2010) 465–477, I. Choe and G. H. Hitching, Lagrangian sub-bundles of symplectic vector bundles over a curve, Math. Proc. Cambridge Phil. Soc. 153 (2012) 193–214]. From the non-defectivity, we also deduce an interesting feature of a general orthogonal bundle of even rank over [Formula: see text], contrasting with the classical and symplectic cases: a general maximal isotropic sub-bundle of maximal degree intersects at least one other such sub-bundle in positive rank.



Author(s):  
W. L. Edge

SummaryThere is a mode of specialising a quartic polynomial which causes a binary quartic to become equianharmonic and a ternary quartic to become a Klein quartic, admitting a group of 168 linear self-transformations. The six relations which must be satisfied by the coefficients of the ternary quartic were given by Coble forty years ago, but their true significance was never suspected and they have remained until now an isolated curiosity. In § 2 we give, in terms of a quadric and a Veronese surface, the geometrical interpretation of the six relations; we also give, in terms of the adjugate of a certain matrix, their algebraical interpretation. Both these interpretations make it abundantly clear that this set of relations specialising a ternary quartic has analogues for quartic polynomials in any number of variables, and point unmistakably to what these analogues are.That a ternary quartic is, when so specialised, a Klein quartic is proved in §§ 4–6. The proof bifurcates after (5.3); one branch leads instantly to the standard form of the Klein quartic while the other leads to another form which, on applying a known test, is found also to represent a Klein quartic. One or two properties of the curve follow from this new form of its equation. In §§ 8–10 some properties of a Veronese surface are established which are related to known properties of plane quartic curves; and these considerations lead to a discussion, in § 11, of certain hexads of points associated with a Klein curve.



Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 314 ◽  
Author(s):  
Alessandra Bernardi ◽  
Enrico Carlini ◽  
Maria Catalisano ◽  
Alessandro Gimigliano ◽  
Alessandro Oneto

We consider here the problem, which is quite classical in Algebraic geometry, of studying the secant varieties of a projective variety X. The case we concentrate on is when X is a Veronese variety, a Grassmannian or a Segre variety. Not only these varieties are among the ones that have been most classically studied, but a strong motivation in taking them into consideration is the fact that they parameterize, respectively, symmetric, skew-symmetric and general tensors, which are decomposable, and their secant varieties give a stratification of tensors via tensor rank. We collect here most of the known results and the open problems on this fascinating subject.



1993 ◽  
Vol 131 ◽  
pp. 127-133 ◽  
Author(s):  
Qing-Ming Cheng

Let Mn be an n-dimensional Riemannian manifold minimally immersed in the unit sphere Sn+p (1) of dimension n + p. When Mn is compact, Chern, do Carmo and Kobayashi [1] proved that if the square ‖h‖2 of length of the second fundamental form h in Mn is not more than , then either Mn is totallygeodesic, or Mn is the Veronese surface in S4 (1) or Mn is the Clifford torus .In this paper, we generalize the results due to Chern, do Carmo and Kobayashi [1] to complete Riemannian manifolds.



2020 ◽  
Vol 222 (2) ◽  
pp. 615-665
Author(s):  
Lawrence Ein ◽  
Wenbo Niu ◽  
Jinhyung Park


2004 ◽  
Vol 280 (2) ◽  
pp. 743-761 ◽  
Author(s):  
Karin Baur ◽  
Jan Draisma


Sign in / Sign up

Export Citation Format

Share Document