scholarly journals The non-linear electrical properties of silver/silver chloride electrodes in sodium chloride solution

2019 ◽  
Vol 10 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Oliver Pabst ◽  
Abbas Anwar ◽  
Adam Andrzej Nieweglowski ◽  
Christian Rolid Lindland ◽  
Habibur Rahman ◽  
...  

Abstract An electrical measurement is non-linear when it is affected by the applied stimulus, i.e. when the measured phenomenon changes with amplitude. If pinched hysteresis loops can be observed in the voltage current representation, the underlying tissue can be classified as a memristor. Several biological memristors have been published, like human skin and apples. However, changes in the polarization impedance of electrodes may also cause pinched hysteresis loops. The question whether the reported biological memristors are real or whether the results just reflect changes in the polarization impedance arises. If the impedance of the measured object is close to or smaller than the polarization impedance of the used electrodes, the latter may dominate the measurement. In this study, we investigated the non-linear electrical properties of silver/silver chloride electrodes in a sodium chloride solution that has a similar concentration as human sweat and compared these to results from human skin. First of all, we found that silver/silver chloride electrodes in sodium chloride solution can be classified as memristors. However, the currents obtained from the sodium chloride solution are much higher than the currents recorded from human skin and there is a qualitative difference in the pinched hysteresis loops in both cases. We can conclude that the non-linear electrical measurements with silver/silver chloride on human skin are actually dominated by the skin and we can confirm that the human skin memristor really exists.

In this work the structure and corrosion behavior of quasicrystalline cast Al69Co21Ni10 and Al72Fe15Ni13 alloys in 5-% sodium chloride solution (рН 6.9–7.1) were investigated. The alloys were cooled at 5 К/s. The structure of the samples was studied by methods of quantitative metallography, X-ray analysis, and scanning electron microscopy. Corrosion properties were determined by potentiodynamic method. Stationary potential values were measured by means of long-term registration of (Е,τ)–curves using ПІ–50–1 potentiostat and ПР–8 programmer with three-electrode electrolytic cell. A platinum electrode served as counter electrode and silver chloride – as reference electrode. The made investigations confirm the formation of stable quasicrystalline decagonal D-phase in the structure of Al69Co21Ni10 and Al72Fe15Ni13 alloys. In Al69Co21Ni10 alloy, at room temperature D-phase coexists with crystalline Al9(Co,Ni)2 phase, and in Al72Fe15Ni13 alloy – with Al5FeNi phase. Comparison of Vickers hardness of these phases exhibits the following sequence: H(D-AlCoNi)>H(D-AlFeNi)>H(Al5FeNi)>H(Al9(Co,Ni)2). In 5-% sodium chloride solution, the investigated alloys corrode under electrochemical mechanisms with oxygen depolarization. Compared with Al72Fe15Ni13 alloy, Al69Co21Ni10 alloy has more negative value of stationary potential (–0,40 V and –0,48 V, respectively), and its electrochemical passivity region extends due to the inhibition of anodic processes. For both alloys, transition to passive state in the saline solution is observed. A corrosion current density, calculated from (E,lgi)-curve, for Al69Co21Ni10 alloy amounts to 0.12 mА/сm2 and for Al72Fe15Ni13 alloy – to 0.14 mА/сm2. After immersion in the saline solution for 8 days, pits are revealed on the surface of the alloys in areas, mainly where the phase boundaries and flaws are located. The number and size of pits are smaller on the surface of Al69Co21Ni10 alloy as compared with those on the surface of Al72Fe15Ni13 alloy. The lower corrosion resistance of Al72Fe15Ni13 alloy may be explained by the presence of iron-containing phases in its structure. Based on obtained results, the Al69Co21Ni10 alloy has been recommended as coating material for rocket-and-space equipment working in marine climate.


1974 ◽  
Vol 28a ◽  
pp. 1139-1144 ◽  
Author(s):  
Torstein Berge ◽  
Per B. Engseth ◽  
Reidar Tunold ◽  
Arne Kjekshus ◽  
Bernt Klewe ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document