polarization impedance
Recently Published Documents


TOTAL DOCUMENTS

46
(FIVE YEARS 9)

H-INDEX

15
(FIVE YEARS 2)

Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Yanxiong Xiang ◽  
Changwei Zou

In methods for multi-arc ion plating technology, the behavior and characteristics of the arc spot determine the physical characteristics of arc plasma and the properties of the subsequent deposited coatings. In this paper, the effect of arc currents on the hardness, friction coefficient, high temperature oxidation, and corrosion properties of the CrSiN coatings was studied. According to the XRD and SEM results, with the increase of arc currents, the coatings grew preferentially to the CrN (111) crystal direction, and the CrN (220) crystal phase appeared at high currents of 90 A. In addition, the number of large particles increased when the current exceeded 70 A. The HR-TEM results confirmed the formation of nanocomposite structure of nanocrystalline of CrN embedded into the amorphous phase of Si3N4 as explored by XRD. The maximum hardness was achieved at 3120 Hv when the coatings were deposited under currents around 70 A. However, the hardness values decreased with further increase of arc currents. From the contact of ceramic balls with the wear of coatings, the surface of coatings gradually produced friction marks, and the friction force increased from a steady friction force to a dynamic friction force. The high temperature oxidation results showed that fewer oxides were formed on the surface of the coatings when oxidized at 800 °C. It was also found that CrSiN nanocomposite coatings prepared at an arc current of 70 A had a larger corrosion potential and polarization impedance, which could effectively protect the tool matrix.


2021 ◽  
Author(s):  
Yajie Guan ◽  
Chathura Bandutunga ◽  
Jiahao Dong ◽  
Timothy Lam ◽  
Roland Fleddermann ◽  
...  

2020 ◽  
Vol 10 (3) ◽  
pp. 763 ◽  
Author(s):  
Maxim Durach ◽  
Robert Williamson ◽  
Morgan Laballe ◽  
Thomas Mulkey

We describe novel topological phases of isofrequency k-space surfaces in bianisotropic optical materials—tri- and tetrahyperbolic materials—which are induced by the introduction of chirality. This completes the classification of isofrequency topologies for bianisotropic materials, as we showed that all optical materials belong to one of the following topological classes—tetra-, tri-, bi-, mono-, or nonhyperbolic. We showed that phase transitions between these classes occur in the k-space directions with zero group velocity at high k-vectors. This classification is based on the sets of high-k polaritons (HKPs), supported by materials. We obtained the equation describing these sets and characterized the longitudinal polarization-impedance of HKPs.


2019 ◽  
Vol 10 (1) ◽  
pp. 113-123 ◽  
Author(s):  
Oliver Pabst ◽  
Abbas Anwar ◽  
Adam Andrzej Nieweglowski ◽  
Christian Rolid Lindland ◽  
Habibur Rahman ◽  
...  

Abstract An electrical measurement is non-linear when it is affected by the applied stimulus, i.e. when the measured phenomenon changes with amplitude. If pinched hysteresis loops can be observed in the voltage current representation, the underlying tissue can be classified as a memristor. Several biological memristors have been published, like human skin and apples. However, changes in the polarization impedance of electrodes may also cause pinched hysteresis loops. The question whether the reported biological memristors are real or whether the results just reflect changes in the polarization impedance arises. If the impedance of the measured object is close to or smaller than the polarization impedance of the used electrodes, the latter may dominate the measurement. In this study, we investigated the non-linear electrical properties of silver/silver chloride electrodes in a sodium chloride solution that has a similar concentration as human sweat and compared these to results from human skin. First of all, we found that silver/silver chloride electrodes in sodium chloride solution can be classified as memristors. However, the currents obtained from the sodium chloride solution are much higher than the currents recorded from human skin and there is a qualitative difference in the pinched hysteresis loops in both cases. We can conclude that the non-linear electrical measurements with silver/silver chloride on human skin are actually dominated by the skin and we can confirm that the human skin memristor really exists.


2019 ◽  
Vol 10 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Oliver Pabst ◽  
Steinar Andersen ◽  
Soban Ali Bhatti ◽  
Jørgen Brevik ◽  
Simen Anthony Fallaas ◽  
...  

Abstract Non-linear electrical properties of a (biological) tissue can be revealed by non-linear electrical measurements, which means that the applied stimulus itself affects the measurement. If resulting voltage–current plots exhibit pinched hysteresis loops, the underlying tissue may be classified as a memristor, a state dependent resistor. The aloe vera plant and apples have been found to be memristors. However, polarization processes on the electrodes are also non-linear and may affect the measurement. Apples and aloe vera conduct electrical current very well and it is likely that the recordings are actually dominated by the polarization impedance of the electrodes. Here, we study the non-linear properties of aloe vera and apples with two different measurement electrode types. Furthermore, we measured also on the extracted liquids from one aloe vera leaf and one apple, leading to similar results. We concluded, unlike previous studies on these subjects, that the memristive properties originate from electrochemical reactions on the electrodes rather than the apples or aloe vera themselves.


2019 ◽  
Vol 3 (1) ◽  
pp. 29-35 ◽  
Author(s):  
J. A. Gómez-Sánchez ◽  
C. J. Felice

Abstract In this paper, we propose an equation and define the Isopotential Interface Factor (IIF) to quantify the contribution of electrode polarization impedance in two tetrapolar electrode shapes. The first tetrapolar electrode geometry shape was adjacent and the second axial concentric, both probes were made of stainless steel (AISI 304). The experiments were carried out with an impedance analyzer (Solartron 1260) using a frequency range between 0.1 Hz and 8 MHz. Based on a theoretical simplification, the experimental results show a lower value of the IIF in the axial concentric tetrapolar electrode system which caused a lower correction of interface value. The higher value of the IIF in the adjacent electrode system was KEEI (1Hz, 0.28 mS/cm) = 1.41 and decreased when the frequency and conductance were increased, whereas in the axial concentric electrode system was KEEI (1Hz, 0.28 mS/cm) = 0.08. The average isopotential interface factor throughout the whole range of conductivities and frequencies was 0.23 in the adjacent electrode system and 0.02 in the axial concentric electrode system. The index of inherent electrical anisotropy (IEA) was used to present an analysis of electrical anisotropy of biceps brachii muscle in vitro using the corrections of both tetrapolar electrode systems. A higher IEA was present in lower frequency where the variation below 1 kHz was 15 % in adjacent electrode configuration and 26 % in the axial concentric probe with respect to full range. The IIF is then shown that it can be used to describe the quality of an electrode system.


Author(s):  
Subir Paul ◽  
Sulagna Sarkar

The article has been withdrawn upon the request of the editor of the journal <b>Innovations in Corrosion and Materials Science (ICMS). Bentham Science apologizes to the readers of the journal for any inconvenience this may have caused. BENTHAM SCIENCE DISCLAIMER: It is a condition of publication that manuscripts submitted to this journal have not been published and will not be simultaneously submitted or published elsewhere. Furthermore, any data, illustration, structure or table that has been published elsewhere must be reported, and copyright permission for reproduction must be obtained. Plagiarism is strictly forbidden, and by submitting the article for publication the authors agree that the publishers have the legal right to take appropriate action against the authors, if plagiarism or fabricated information is discovered. By submitting a manuscript, the authors agree that the copyright of their article is transferred to the publishers if and when the article is accepted for publication.


Sign in / Sign up

Export Citation Format

Share Document