scholarly journals Advancements in Thermal Energy Storage System by Applications of Nanofluid Based Solar Collector: A Review

2020 ◽  
Vol 24 (1) ◽  
pp. 310-340
Author(s):  
Vednath P. Kalbande ◽  
Pramod V. Walke ◽  
C. V. M. Kriplani

AbstractIn the recent years, a lot of research has been carried out in the field of nanofluid based solar collector, leading towards the enhancement of working efficiency even at low atmospheric temperature or at low sunlight levels regions of the world. The present review pertains to the research progress related to the performance execution of solar collector using nanofluid. It is observed that the thermal energy storage system (TES), using solar collector, is a useful device for storing sensible and latent heat in a unit volume. Nanofluid plays an important role in various thermal applications such as heat exchanger, solar power generation, automotive industries, electronic cooling system, etc. The nanoparticles find the use in various industrial applications because of its properties, such as thermal, mechanical, optical and electrical. Most of the investigations carried out earlier on the applications of nanofluid in solar energy are related to their uses in the solar collector and thermal storage system. The parabolic solar collector using nanofluid is still a challenge. This article presents an exhaustive review of thermal storage system using nanofluid based solar collector and a scope of using nanofluid based solar collector for performance enhancement.

Author(s):  
Ben Xu ◽  
Peiwen Li ◽  
Cholik Chan

Because of the capability of large capacity thermal storage and extended operation during night and cloudy days, concentrated solar thermal power generation is getting more and more attention in the recent years. Dual-media thermal energy storage system is typically adopted in industry for reducing the use of the heat transfer fluid, which is usually expensive. In such a dual-media system, the solid filler material can be a phase change material relying on latent heat or a regular solid material using sensible heat for energy storage. Two strategies of starting-up fluid charge and discharge are considered for the operation of a concentrated solar thermal power plant incorporated with a dual-media thermal storage system. These two strategies include: 1) starting daily cyclic charge and discharge operation with an initially cold tank; 2) to fully charge the thermal storage system before operation of the cyclic discharge/charge for the power plant. The energy storage efficiency and the effects to the power plant operation due to the application of these two strategies are studied in the current work based on an enthalpy-based 1-D model, and significant difference is found in starting-up process of the daily cyclic operations, which will help us decide the best strategy of operating a thermal energy storage system with more electrical energy output.


Author(s):  
Karthik Nithyanandam ◽  
Amey Barde ◽  
Louis Tse ◽  
Reza Baghaei Lakeh ◽  
Richard Wirz

Efficient and cost-effective thermal energy storage system plays an important role in energy conservation. Elemental sulfur, the thirteenth most abundant element on earth, is actively being researched as a potential thermal storage medium due to its high energy storage density and low cost. The present work investigates the heat transfer behavior of elemental sulfur at temperatures between 50 degree Celsius and 250 degree Celsius. A shell and tube heat exchanger configuration with sulfur stored inside the tubes and heat transfer fluid flowing over the tubes through the shell is considered. A detailed computational model solving for the conjugate heat transfer and solid-liquid phase change dynamics of the sulfur based thermal energy storage system is developed to elucidate the complex interplay between the governing heat transfer and fluid flow phenomena during charge and discharge operations. The developed numerical model is compared with experimental results and a systematic parametric analysis of the effects of various design parameters on the performance of the thermal storage system is reported.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1821 ◽  
Author(s):  
Getu Hailu ◽  
Philip Hayes ◽  
Mark Masteller

We present more than one-year of monitoring results from a thermal energy storage system located in a very cold place with a long winter season. The studied house is in Palmer city, Alaska (~62° N, ~149° W). The house is equipped with solar PV for electricity production and solar thermal collectors which were linked to a sensible thermal energy storage system which is underneath the house’s normally unoccupied garage and storage space. Sensors were installed in the thermal storage and solar thermal collector array to monitor system temperatures. In addition, TRNSYS was used for numerical simulation and the results were compared to experimental ones. The maximum observed garage ambient temperature was ~28 °C while the simulated maximum ambient garage temperature was found to be ~22 °C. Results indicate that seasonal solar thermal storages are viable options for reducing the cost of energy in a region with extended freezing periods. This is significant for Alaska where the cost of energy is 3–5 times the national average.


Sign in / Sign up

Export Citation Format

Share Document