ANALISA PENGARUH PENAMBAHAN THERMAL ENERGY STORAGE PADA PEMANAS AIR TENAGA SURYA TIPE PLAT DATAR

POROS ◽  
2017 ◽  
Vol 14 (1) ◽  
pp. 37
Author(s):  
Maharuli Maharuli ◽  
I Made Kartika ◽  
Harto Tanujaya

Abstract: Solar energy, the renewable energy is only available at certain hour. So it is essential to develop efficient, economical solar thermal energy storage. Thermal energy storage (TES) systems provide several alternatives for efficient energy use and conservation. Phase change materials (PCMs) for TES are materials supplying thermal regulation at particular phase change temperatures by absorbing and emitting the heat of the medium. TES in general and PCMs in particular, absorb energy during the heating process as phase change takes place and release energy to the environment in the phase change range during a reverse cooling process. PCMs possesses the ability of latent thermal energy change their state with a certain temperature. Paraffin is the PCM used in this research. Paraffin is being added to a solar water heater to store thermal energy at daylight and supply the stored energy to the heat pipe when the sundown. From this research, it is found that the solar water heater with paraffin need longer heating time than the conventional solar water heater but it could provide steadier heating performance and warm water even when the sun was down. 

Author(s):  
Mohammad Alhuyi Nazari ◽  
Akbar Maleki ◽  
Mamdouh El Haj Assad ◽  
Marc A. Rosen ◽  
Arman Haghighi ◽  
...  

2021 ◽  
pp. 467-494
Author(s):  
Jyoti Saroha ◽  
Sonali Mehra ◽  
Mahesh Kumar ◽  
Velumani Subramaniam ◽  
Shailesh Narain Sharma

Polymers ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 2043 ◽  
Author(s):  
Hai-Chen Zhang ◽  
Ben-hao Kang ◽  
Xinxin Sheng ◽  
Xiang Lu

A series of novel bio-based form stable composite phase-change materials (fs-CPCMs) for solar thermal energy storage and management applications were prepared, using the pomelo peel flour (PPF) as the supporting matrix and poly (ethylene glycol) (PEG) or isocyanate-terminated PEG to induce a phase change. The microscopic structure, crystalline structures and morphologies, phase change properties, thermal stability, light-to-thermal conversion behavior, and thermal management characteristics of the obtained fs-CPCMs were studied. The results indicate that the obtained fs-CPCM-2 presented remarkable phase-change performance and high thermal stability. The melting latent heat and crystallization heat for fs-CPCM-2 are 143.2 J/g and 141.8 J/g, respectively, and its relative enthalpy efficiency ( λ ) is 87.4%, which are higher than most reported values in the related literature. The obtained novel bio-based fs-CPCM-2 demonstrated good potential for applications in solar thermal energy storage and waste heat recovery.


Sign in / Sign up

Export Citation Format

Share Document