coconut shell
Recently Published Documents





Barkha Verma

Abstract: Aggregates provide volume at low cost, comprising 66% to 78% of the concrete. With increasing concern over the excessive exploitation of natural and quality aggregates, the aggregate produced from industrial wastes and agricultural wastes is the viable new source for building material. This study was carried out to determine the possibilities of using coconut shells as aggregate in concrete. Utilizing coconut shells as aggregate in concrete production not only solves the problem of disposing of this solid waste but also helps conserve natural resources. In this paper, the physical properties of crushed coconut shell aggregate were presented. The fresh concrete properties such as the density and slump and 28 days compressive strength of lightweight concrete made with coconut shell as coarse aggregate were also presented. The findings indicate that water absorption of the coconut shell aggregate was high about 24% but crushing value and impact value were comparable to that of other lightweight aggregates. The average fresh concrete density and 28days cube compressive strength of the concrete using coconut shell aggregate 1975kg/m3 and 19.1 N/mm2 respectively. It is concluded that crushed coconut shell is suitable when it is used as a substitute for conventional aggregates in lightweight concrete production. Keywords: Coarse Aggregate, Cement, Concrete, Fly Ash, Coconut shell Aggregate, Water, Compressive Strength, Workability, Fine Aggregate.

2022 ◽  
Vol 4 (3) ◽  
pp. 461-473
Sintiani Perdani ◽  
Didik Ari Wibowo ◽  
Desmira Desmira

Around 35% of the total utilization of coconuts at this time is still not fully utilized. Thermoelectric is a technology that converts heat energy directly into electrical energy or converts electrical energy into heating and cooling energy. Data retrieval using two multimeters and an electric thermometer, data collection was carried out for 2 minutes. From the test results, this tool can produce an average voltage of 10.05 Volt for 200gram coconut shells, an average current of 0.99 Ampere and an average power of 13.84 Watts and can fully charge the battery up to 3 hours 33 minutes, while for 300 grams produces an average voltage of 10.59 Volts for 300gram coconut shells, an average current of 0.995 Ampere and an average power of 13.56 Watts and the battery can be fully charged in about 3 hours 36 minutes, while a coconut shell weighing 400 grams can produces an average voltage of 10.94 Volts, an average current of 1 Ampere and an average power of 13.70 Watts and the battery can be fully charged in about 3 hours 30 minutes. The more coconut shells used for combustion, the hotter the temperature and the faster the voltage and current are obtained, but with a note that the maximum temperature limit of the thermoelectric is T not more than 200o C. Keywords: Coconut Shell, Thermoelectric, Electrical Energy.

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 265
Natalia Sienkiewicz ◽  
Midhun Dominic ◽  
Jyotishkumar Parameswaranpillai

Epoxy resins as important organic matrices, thanks to their chemical structure and the possibility of modification, have unique properties, which contribute to the fact that these materials have been used in many composite industries for many years. Epoxy resins are repeatedly used in exacting applications due to their exquisite mechanical properties, thermal stability, scratch resistance, and chemical resistance. Moreover, epoxy materials also have really strong resistance to solvents, chemical attacks, and climatic aging. The presented features confirm the fact that there is a constant interest of scientists in the modification of resins and understanding its mechanisms, as well as in the development of these materials to obtain systems with the required properties. Most of the recent studies in the literature are focused on green fillers such as post-agricultural waste powder (cashew nuts powder, coconut shell powder, rice husks, date seed), grass fiber (bamboo fibers), bast/leaf fiber (hemp fibers, banana bark fibers, pineapple leaf), and other natural fibers (waste tea fibers, palm ash) as reinforcement for epoxy resins rather than traditional non-biodegradable fillers due to their sustainability, low cost, wide availability, and the use of waste, which is environmentally friendly. Furthermore, the advantages of natural fillers over traditional fillers are acceptable specific strength and modulus, lightweight, and good biodegradability, which is very desirable nowadays. Therefore, the development and progress of “green products” based on epoxy resin and natural fillers as reinforcements have been increasing. Many uses of natural plant-derived fillers include many plant wastes, such as banana bark, coconut shell, and waste peanut shell, can be found in the literature. Partially biodegradable polymers obtained by using natural fillers and epoxy polymers can successfully reduce the undesirable epoxy and synthetic fiber waste. Additionally, partially biopolymers based on epoxy resins, which will be presented in the paper, are more useful than commercial polymers due to the low cost and improved good thermomechanical properties.

2022 ◽  
Vol 53 ◽  
Aparecida Barbosa de Paiva ◽  
Carlos Alberto Kenji Taniguchi ◽  
Ricardo Espindola Romero ◽  
Deborah dos Santos Garruti ◽  
Marcela Claudia Pagano ◽  

Sign in / Sign up

Export Citation Format

Share Document