scholarly journals Corrosion resistance of Au/Ni thin film-coated stainless steel used as a polymer electrolyte fuel-cell separator

Author(s):  
Y. Kimura ◽  
M. Hirano
2017 ◽  
Vol 42 (9) ◽  
pp. 6303-6309 ◽  
Author(s):  
Yang Yu ◽  
Sayoko Shironita ◽  
Takaaki Mizukami ◽  
Kunio Nakatsuyama ◽  
Kenichi Souma ◽  
...  

2010 ◽  
Vol 113-116 ◽  
pp. 2255-2261
Author(s):  
Dong Ming Zhang ◽  
Lu Guo ◽  
Liang Tao Duan ◽  
Zai Yi Wang

In the present study, we try to prepare hydrophobic film coated on stainless steel as the bipolar plate for polymer electrolyte membrane fuel cell (PEMFC). Magnetron sputtering (MS) was adoped to prepare the Cr3Ni2/Cr2N multi-layer coated on stainless steel. The corrosion resistance and electrical conductance of the coated substrate were tested. The water contact angles were measured. The film exhibits improved corrosion resistance and electrical conductance. The corrosion current is 0.58µA.cm-2 and the contact resistance at 240N.cm-2 is 8.5mΩ.cm2. Meanwhile, it is a kind of hydrophobic film with water contact angle of 107o. The performance shows strong dependance on microstructural characteristics. The nano-protrudes on the SS304/Cr3Ni2/Cr2N surface result in the film with hydrophobic property, just like the effect of lotus surface.


Author(s):  
Peter Dobson ◽  
Marc Secanell

The catalyst layer of a polymer electrolyte fuel cell is commonly represented in mathematical models as an agglomerate structure of carbon catalyst-support particles. There are two prevailing assumptions for the structure of the agglomerates. The first is that the pores are filled with perfluorosulfonated-ionomer (PFSI). The second is that the pores are hydrophilic and are flooded only with liquid water during operation. The objective of this work is to develop numerical models for single water-filled and ionomer-filled agglomerates in a cathode catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC), and investigate the properties of oxygen transport, proton transport, and reaction kinetics. The two models provide different solutions for the distribution of oxygen and protons, and produce a different reaction profile within the agglomerate. Previous numerical water-filled ionomer models in the literature have neglected the effect of the ionomer thin film. Therefore, the results obtained for both ionomer and water-filled models could not be easily compared. In this article, the equations developed relate the assumed structure of the agglomerates to the structure of the catalyst layer (CL). Results compare the effect of the thin film thickness in the two different types of agglomerates and relate the phenomena occurring within the agglomerates to overall catalyst layer performance.


2012 ◽  
Vol 9 (3-4) ◽  
pp. 673-676 ◽  
Author(s):  
M. Shimahashi ◽  
K. Matsui ◽  
K. Okada ◽  
K. Sugita ◽  
H. Sasaki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document