ASME 2011 9th International Conference on Fuel Cell Science, Engineering and Technology
Latest Publications


TOTAL DOCUMENTS

121
(FIVE YEARS 0)

H-INDEX

3
(FIVE YEARS 0)

Published By ASMEDC

9780791854693

Author(s):  
Adriano Sciacovelli ◽  
Vittorio Verda ◽  
Cristina Amelio ◽  
Carlo Repetto ◽  
Gustavo Diaz

In this paper, the prototype of a circular Molten Carbonate Fuel Cell (MCFC) built in the laboratories of FN SpA Nuove Tecnologie e Servizi Avanzati is analyzed using a tridimensional computational fluid dynamic (CFD) model. The prototype is the result of FN and Politecnico di Torino activities developed for the Italian National Agency for New Technologies, Energy and Sustainable Economic Development (ENEA) within the framework of Ministry of Economic Development, MSE-ENEA. This model considers heat, mass and current transfer as well as chemical and electrochemical reactions. The results show that some inhomogeneous distributions in the reactants, causing non-optimal use of the reactant surfaces. An effective way to improve the distribution in current density consists in tracing tree shaped channels on the surface onto the distribution porous medium. In this paper Y shaped channels are adopted to improve the distribution of gas within the fuel cell and consequently to enhance the performance of the original design of the fuel cell. In addition, the configuration of the outlet of the anodic compartment is also investigated in order to further increase the performance of the fuel cell. The geometrical parameter identifying the topology of distribution channels are chosen accordingly to the constructal theory. The results show that significant improvements can be achieved. Power density is increased of about 6% when the tree-shaped channel is adopted. If a double anodic inlet is also considered the enhancement in the power density is of about 11% with respect to the initial configuration.



Author(s):  
Yuan Gao

This study is using the multiple relaxation time Lattice Boltzmann method to calculate the permeability of carbon fiber paper and carbon fiber cloth gas diffusion layers (GDL). The 3D gas diffusion layers are generated by X-ray computed tomography, This method involve generation of 3D digital model of gas diffusion layers acquired through X-ray micro-tomography at resolution of a few micros. The reconstructed 3D images were then read into the LBM model to calculate the anisotropic permeability of carbon fiber paper and carbon fiber cloth GDL. We investigated the relationships between the anisotropic permeability and porosity and compare the difference between the two different kinds of GDLs when they have the similar porosity. We also calculate the permeability with different viscosity and compare the two results from the carbon fiber paper and carbon fiber cloth. It is useful for selection of materials for high performance gas diffusion media and can improve the performance of the fuel cells.



Author(s):  
Pradyumna Challa ◽  
James Hinebaugh ◽  
A. Bazylak

In this paper, through-plane liquid water distribution is analyzed for two polymer electrolyte membrane fuel cell (PEMFC) gas diffusion layers (GDLs). The experiments were conducted in an ex situ flow field apparatus with 1 mm square channels at two distinct flow rates to mimic water production rates of 0.2 and 1.5 A/cm2 in a PEMFC. Synchrotron radiography, which involves high intensity monochromatic X-ray beams, was used to obtain images with a spatial and temporal resolution of 20–25 μm and 0.9 s, respectively. Freudenberg H2315 I6 exhibited significantly higher amounts of water than Toray TGP-H-090 at the instance of breakthrough, where breakthrough describes the event in which liquid water reaches the flow fields. While Freudenberg H2315 I6 exhibited a significant overall decrease in liquid water content throughout the GDL shortly after breakthrough, Toray TGP-H-090 appeared to retain breakthrough water-levels post-breakthrough. It was also observed that the amount of liquid water content in Toray TGP-H-090 (10%.wt PTFE) decreased significantly when the liquid water injection rate increased from 1 μL/min to 8 μL/min.



Author(s):  
Nicola Zuliani ◽  
Rodolfo Taccani ◽  
Robert Radu

High temperature PEM (HTPEM) fuel cell based on polybenzimidazole polymer (PBI) and phosphoric acid, can be operated at temperature between 120°C and 180°C. Reactants humidification is not required and CO content up to 1% in fuel can be tolerated, affecting only marginally performance. This is what makes HTPEM fuel cells very attractive, as low quality reformed hydrogen can be used and water management problems are avoided. This paper aims to present the preliminary experimental results obtained on a HTPEM fuel cell fed with LPG using a compact steam reformer. The analysis focus on the reformer start up transient, on the influence of the steam to carbon ratio on reformate CO content and on the single fuel cell performance at different operating conditions. By analyzing the mass and energy balances of the fuel processor, fuel cell system, and balance-of-plant, a previously developed system simulation model has been used to provide critical assessment on the conversion efficiency for a 1 kWel system. The current study attempts to extend the previously published analyses of integrated HTPEM fuel cell systems.



Author(s):  
Junxiang Shi ◽  
Xingjian Xue

Suitable porous electrode design may play a significant role in the performance enhancement of solid oxide fuel cells (SOFCs). In this paper, a genetic algorithm optimization method is employed to design electrodes based on a 2-D planar SOFC model development. The objective is to find out suitable porosity and particle size distributions for both anode and cathode electrodes so that the cell performance can be maximized. The results indicate that the optimized heterogeneous electrode may better improve SOFC performance than the homogeneous count-part, particularly under relatively high current density conditions. The optimization results are dependent on the operating conditions. The effects of pressure losses along the anode/cathode channels and inlet fuel compositions are investigated. The proposed approach provides a systematical method for electrode microstructure designs of high performance SOFCs.



Author(s):  
Yu-Jen Chiu ◽  
Yen-Ling Lin

Fuel cell is a kind of devices that generates electricity and heat via electrochemical reactions. Accompanying the development of relevant applications, the efficiency issue has received more and more interest. In the duration of electricity generation, a variety of polarization losses will disperse in the form of heat. Higher electricity efficiency leads to lower heat generation, and vice versa. The amount of the generated heat correlates with the temperature gradient of the fuel flow along the stack channel. For a direct methanol fuel cell (DMFC), both the fuel utilization efficiency and fuel concentration are essential indices for the system. However, it is much complicated to acquire them. As a result, it will be a feasible and valuable approach to correlate these indices with the temperature gradient. In this work, an energy balance model of a DMFC is established to investigate factors that contribute thermal influences on the system. Based on the model, the relationship between efficiency and temperature gradient is derived. The proposed model may serve as the basis of water and thermal management strategies, which are beneficial for enhancing the performance and reliability of such a power generation system.



Author(s):  
Huang Guo ◽  
Gulfam Iqbal ◽  
Bruce S. Kang

Solid Oxide Fuel Cell anode is readily degraded by trace amount of Phosphine (PH3) contaminant that is found in coal-derived syngas. PH3 interacts with the anode material and affects its electrochemical performance by forming secondary phases. In this paper, the influence of the ppm level of PH3 with moisture is investigated on the formation of secondary phases and hence on anode electrochemical performance degradation. Nickel yttria-stabilized zirconia (Ni-YSZ) anode shows immediate and severe electrochemical degradation due to PH3 in moist hydrogen condition attributed to the nickel-phosphate secondary phase formation. Whereas in dry hydrogen condition, nickel-phosphide is preferred to form on the anode surface that shows less deleterious effects on SOFC performance as compared to nickel-phosphate.



Author(s):  
N. Khajeh-Hosseini-Dalasm ◽  
S. Ahadian ◽  
K. Fushinobu ◽  
K. Okazaki

A mathematical model was developed to study the cathode catalyst layer (CL) performance of a proton exchange membrane fuel cell (PEMFC). A number of CL parameters affecting its performance are implemented into the CL agglomerate model. These parameters are: saturation and eight structural parameters, i.e., ionomer film thickness covering the agglomerate, agglomerate radius, platinum and carbon loading, membrane content, gas diffusion layer penetration content and CL thickness. An artificial neural network (ANN) approach along with statistical methods was used for modeling, prediction, and analysis of the CL performance, which is determined by activation over-potential. The ANN was constructed to develop a relationship between the named (input) parameters and activation overpotential. An statistical analysis, namely, analysis of means (ANOM) was performed on the data obtained by the trained ANN and resulted in the main effect of each input parameter, sensitivity factors of structural parameters and their mutual combination.



Author(s):  
J. Yablecki ◽  
A. Bazylak

The anisotropic and heterogeneous effective thermal conductivity of the gas diffusion layer (GDL) of the polymer electrolyte membrane fuel cell was determined in the through-plane direction using an analytical thermal resistance model. The geometry of the GDL was reconstructed using porosity profiles obtained through microscale computed tomography imaging of four commercially available GDL materials. The effective thermal conductivity increases almost linearly with increasing bipolar plate compaction pressure. The effective thermal conductivity was also seen to increase with increasing GDL thickness as bulk porosity remained almost constant. The effect of the heterogeneous through-plane porosity distribution on the effective thermal conductivity is discussed. The outcomes of this work will provide insight into the effect of heterogeneity and anisotropy of the GDL on the thermal management required for improved PEMFC performance.



Author(s):  
Peter Dobson ◽  
Marc Secanell

The catalyst layer of a polymer electrolyte fuel cell is commonly represented in mathematical models as an agglomerate structure of carbon catalyst-support particles. There are two prevailing assumptions for the structure of the agglomerates. The first is that the pores are filled with perfluorosulfonated-ionomer (PFSI). The second is that the pores are hydrophilic and are flooded only with liquid water during operation. The objective of this work is to develop numerical models for single water-filled and ionomer-filled agglomerates in a cathode catalyst layer of a polymer electrolyte membrane fuel cell (PEMFC), and investigate the properties of oxygen transport, proton transport, and reaction kinetics. The two models provide different solutions for the distribution of oxygen and protons, and produce a different reaction profile within the agglomerate. Previous numerical water-filled ionomer models in the literature have neglected the effect of the ionomer thin film. Therefore, the results obtained for both ionomer and water-filled models could not be easily compared. In this article, the equations developed relate the assumed structure of the agglomerates to the structure of the catalyst layer (CL). Results compare the effect of the thin film thickness in the two different types of agglomerates and relate the phenomena occurring within the agglomerates to overall catalyst layer performance.



Sign in / Sign up

Export Citation Format

Share Document