nitride layer
Recently Published Documents


TOTAL DOCUMENTS

340
(FIVE YEARS 61)

H-INDEX

21
(FIVE YEARS 2)

2022 ◽  
Vol 8 (1) ◽  
pp. 45-50
Author(s):  
Dian Artha Kusumaningtyas ◽  
Hanif Khoirudin ◽  
Muamila Tami ◽  
Mila Utami Sari ◽  
Arif Nirsatmanto ◽  
...  

Eucalyptus is a plant that is able to absorb gold (Au) particles from the soil and store them in the leaves. Eucalyptus roots have the ability to penetrate the soil of the calcrete zone, which is rich in the mineral calcium (Ca). Calcium is a chemical element with the symbol Ca and atomic number 20. As an alkaline earth metal, calcium is a reactive metal that forms a dark oxide-nitride layer when exposed to air. and contains Au particles as impurities, making this plant a potential natural indicator (biogeochemical) of potential Au metal mining. The Au content in eucalyptus leaves can be determined by using the XRF (X-Ray Fluorescence) instrumentation material analysis method for qualitative analysis and AAS (Atomic Absorption Spectroscopy) for quantitative results. The form of XRF characterization of the intensity versus energy spectrum of certain elements from the XRF analysis results obtained is a spectrum with a peak power of 9.731 keV which indicates the presence of Au metal in the sample. The results obtained qualitatively are the Au metal content in the eucalyptus leaf sample of (9.0 ± 0.5) ppm. However, the Au metal content in each leaf sample was different. This provides information that Eucalyptus from different plants has the potential to be a biogeochemical indicator of potential Au metal mining in Indonesia


Author(s):  
Arijit Bose ◽  
Debaleen Biswas ◽  
Shigeomi Hishiki ◽  
Sumito Ouchi ◽  
Koichi Kitahara ◽  
...  

Author(s):  
Д.А. Кириленко ◽  
А.В. Мясоедов ◽  
А.Е. Калмыков ◽  
Л.М. Сорокин

Structural features of the interface between semipolar gallium nitride layer and buffer layer of aluminum nitride grown on a SiC/Si(001) template misoriented by an angle of 7° were studied by high-resolution transmission electron microscopy. The effect of interface morphology on the structural quality of the gallium nitride layer is revealed: faceted structure the surface of the buffer layer reduces the threading dislocations density.


2021 ◽  
Vol 2086 (1) ◽  
pp. 012200
Author(s):  
P Palkanov ◽  
V Koshuro ◽  
A Fomin

Abstract The study results of the structure and microhardness of the surface layer of high-speed tool steel after induction chemical-thermal treatment in a gaseous nitrogen-containing medium at a temperature of 900–1100 °C were presented. Due to the strengthening treatment of products a gradient diffusion nitride layer with a thickness of about 200 μm and a surface microhardness of 1950±70 HV1 98 was formed.


Micro ◽  
2021 ◽  
Vol 1 (2) ◽  
pp. 228-241
Author(s):  
Benjamin Richstein ◽  
Lena Hellmich ◽  
Joachim Knoch

Problems with doping in nanoscale devices or low temperature applications are widely known. Our approach to replace the degenerate doping in source/drain (S/D)-contacts is silicon nitride interface engineering. We measured Schottky diodes and MOSFETs with very thin silicon nitride layers in between silicon and metal. Al/SiN/p-Si diodes show Fermi level depinning with increasing SiN thickness. The diode fabricated with rapid thermal nitridation at 900 ∘C reaches the theoretical value of the Schottky barrier to the conduction band ΦSB,n=0.2 eV. As a result, the contact resistivity decreases and the ambipolar behavior can be suppressed. Schottky barrier MOSFETs with depinned S/D-contacts consisting of a thin silicon nitride layer and contact metals with different work functions are fabricated to demonstrate unipolar behavior. We presented n-type behavior with Al and p-type behavior with Co on samples which only distinguish by the contact metal. Thus, the thermally grown SiN layers are a useful method suppress Fermi level pinning and enable reconfigurable contacts by choosing an appropriate metal.


Crystals ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1421
Author(s):  
Jianxiu Chang ◽  
Wenhao Feng ◽  
Wenwen Zhao ◽  
Hongmin Jia ◽  
Yanming Liu ◽  
...  

The relative content of strengthening element tantalum (Ta) and oxidation-resistant element chromium (Cr) is an essential value for superalloys to obtain an excellent combination of oxidation resistance and mechanical properties. In the present paper, the isothermal oxidation behavior of several single crystal Ni-base superalloys with different Ta/Cr (wt. %, similarly hereinafter) ratios at 1000 °C in static air has been systematically investigated to explore the optimal Ta/Cr for excellent oxidation resistance. A detailed microstructure study using X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS) and an electro-probe microanalyzer (EPMA) was performed to reveal the oxidation products and mechanisms. For all alloys, a three-layer structured scale consisting of an outer (Cr, Al, Ti, Ni, Ta)-O layer, an inner Al2O3 layer and an inner nitride layer was formed. As Ta/Cr increased, the amounts of Ta-containing products, cracks, holes and inner nitride increased. Meanwhile, the completeness of the Al2O3 layer got worse. It was shown that if Ta/Cr ≤ 0.5, Ta increased the growth rate of Cr2O3 via the doping effect induced by Ta cations. If Ta/Cr > 0.5, Ta reduced the completeness of Cr2O3 through competitive growth of Ta2O5 and Cr2O3. A good oxidation performance can be expected with the value Ta/Cr ≤ 0.5.


Author(s):  
Liangxing Hu ◽  
Simon Chun Kiat Goh ◽  
Jing Tao ◽  
Yu Dian Lim ◽  
Peng Zhao ◽  
...  

Abstract In this paper, a two-step copper-copper direct bonding process in a non-vacuum environment is reported. Time-dependent evolution of argon/nitrogen plasma-activated copper surface is carefully studied. A multitude of surface characterizations are performed to investigate the evolution of the copper surface, with and without argon/nitrogen plasma treatment, when it is exposed to the cleanroom ambient for a period of time. The results reveal that a thin layer of copper nitride is formed upon argon/nitrogen plasma activation on copper surface. It is hypothesized that the nitride layer could dampen surface oxidation. This allows the surface to remain in an “activated” state for up to 6 hours. Afterwards, the activated dies are physically bonded at room temperature in cleanroom ambient. Thereafter, the bonded dies are annealed at 300ºC for varying duration, which results in an improvement of the bond strength by a factor of 70 ~ 140 times. A sample bonded after plasma activation and 2-hour cleanroom ambient exposure demonstrates the largest shear strength (~5 MPa). The degradation of copper nitride layer at elevated temperature could aid in maintaining a localized inert environment for the initial diffusion of copper atoms across the interface. This novel bonding technique would be useful for high-throughput three-dimensional wafer bonding and heterogeneous packaging in semiconductor manufacturing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sandra Pawłowska ◽  
Jakub Gierowski ◽  
Bartłomiej Stonio ◽  
Marcin Juchniewicz ◽  
Mateusz Ficek ◽  
...  

AbstractMirrors are used in optical sensors and measurement setups. This creates a demand for mirrors made of new materials and having various properties tailored to specific applications. In this work, we propose silicon covered with a thin silicon nitride layer as a mirror for near-infrared measurements. SiN layer was deposited on a standard silicon wafer with a Low-Pressure Chemical Vapor Deposition furnace. Then, the created layer was investigated using ellipsometry and scanning electron microscope. Subsequently, the mirror was used as a reflecting surface in a Fabry–Perot fiber-optic interferometer. The mirror performance was investigated for wavelengths used in telecomunication (1310 nm and 1550 nm) and then compared with results obtained with the same measurement setup, with a silver mirror instead of silicon covered with SiN, as reference. Results showed that the proposed mirror can replace the silver one with satisfying results for investigated wavelengths.


Author(s):  
Stefan Kante ◽  
Andreas Leineweber

AbstractA Fe–3wt pctSi alloy was gas nitrided to study the effect of Si on the Fe nitride formation. Both ε-Fe3N1+x and γ′-Fe4N were observed at nitriding conditions only allowing to form single-phase γ′ layers in pure α-Fe. During short nitriding times, ε and γ′ simultaneously grow in contact with Si-supersaturated α-Fe(Si). Both nitrides almost invariably exhibit crystallographic orientation relationships with α-Fe, which are indicative of a partially displacive transformation of α-Fe being involved in the initial formation of ε and γ′. Due to Si constraining the Fe nitride growth, such transformation mechanism becomes highly important to the nitride layer formation, causing α-Fe-grain-dependent variations in the nitride layer morphology and thickness, as well as microstructure refinement within the nitride layer. After prolonged nitriding, α-Fe is depleted in Si due the pronounced precipitation of Si-rich nitride in α-Fe. The growth mode of the compound layer changes, now advancing by conventional planar-type growth. During nitriding times of 1 to 48 hours, ε exists in contact with the NH3/H2-containing nitriding atmosphere at a nitriding potential of 1 atm−1/2 and 540 °C, only allowing for the formation of γ′ in pure Fe, indicating that Si affects the thermodynamic stability ranges of ε and γ′.


Sign in / Sign up

Export Citation Format

Share Document