surface composition
Recently Published Documents


TOTAL DOCUMENTS

2396
(FIVE YEARS 379)

H-INDEX

86
(FIVE YEARS 10)

2022 ◽  
Author(s):  
Lihui Ou

Abstract A deeper mechanistic understanding on CH3OH oxidation on Pt-Ru alloys with different Ru surface compositions is provided by DFT-based theoretical studies in this paper. The present results show that alloying and surface compositions of Ru can change CH3OH oxidation pathway and activity. The optimal surface composition of Ru is speculated to be ca. 50% since the higher Ru surface composition can lead to formation of carbonaceous species that can poison surface. Our present calculated Ru surface composition of ca. 50% exhibits excellent consistency with experimental studies. The origin of enhanced catalytic activity of Pt-Ru alloys is determined. The significantly decreased surface work functions after alloying suggest more electrons are transferred into adsorbates. The calculated lower electrode potentials after alloying imply that lower overpotentials are required for CH3OH oxidation. The excellent inconsistency with experimental study on decreased onset potentials after alloying further confirms accuracy of our present calculated results.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 84
Author(s):  
Jiawei Li ◽  
Junren Xiang ◽  
Ge Yi ◽  
Yuanting Tang ◽  
Huachen Shao ◽  
...  

Surface residual lithium compounds of Ni-rich cathodes are tremendous obstacles to electrochemical performance due to blocking ion/electron transfer and arousing surface instability. Herein, ultrathin and uniform Al2O3 coating via atomic layer deposition (ALD) coupled with the post-annealing process is reported to reduce residual lithium compounds on single-crystal LiNi0.6Mn0.2Co0.2O2 (NCM622). Surface composition characterizations indicate that LiOH is obviously reduced after Al2O3 growth on NCM622. Subsequent post-annealing treatment causes the consumption of Li2CO3 along with the diffusion of Al atoms into the surface layer of NCM622. The NCM622 modified by Al2O3 coating and post-annealing exhibits excellent cycling stability, the capacity retention of which reaches 92.2% after 300 cycles at 1 C, much higher than that of pristine NCM622 (34.8%). Reduced residual lithium compounds on NCM622 can greatly decrease the formation of LiF and the degree of Li+/Ni2+ cation mixing after discharge–charge cycling, which is the key to the improvement of cycling stability.


2022 ◽  
Author(s):  
Swen Zerebecki ◽  
Kai Schott ◽  
Soma Salamon ◽  
Joachim Landers ◽  
Eko Budiyanto ◽  
...  

Controlling the surface composition of colloidal nanoparticles is still a challenging yet mandatory prerequisite in catalytic studies to investigate composition-activity trends, active sites, and reaction mechanisms without superposition of particle size- or morphology-effects. Laser post-processing of colloidal nanoparticles has been employed previously to create defects in oxide nanoparticles, while the possibility of laser-based cation doping of colloidal nanoparticles without affecting their size, remains mostly unaccounted for. Consequently, at the example of doping iron into colloidal Co3O4 spinel nanoparticles, we developed a pulse-by-pulse laser cation doping method to provide catalyst series with gradual surface composition but maintained extrinsic properties such as phase, size, and surface area for catalytic studies. Laser pulse number-resolved doping series were prepared at laser intensity chosen to selectively heat the Co3O4-NPs to roughly 1000 K and enable cation diffusion of surface-adsorbed Fe3+ into the Co3O4 lattice while maintaining the spinel phase, particle size, and surface area. The combination of bulk-sensitive X-ray fluorescence (XRF) and surface-sensitive X-ray photoelectron spectroscopy (XPS) was used to confirm a surface enrichment of the Fe-dopant. XRD, Magnetometry, and Mössbauer spectroscopy revealed an increasing interaction between Fe and the antiferromagnetic Co3O4 with an increasing number of pulses, in line with a proposed laser-induced surface doping of colloidal Co3O4 with Fe. Using Fick’s second law the thermal diffusion-related doping depth was estimated to be roughly 2 nm after 4 laser pulses. At the example of gas-phase 2-propanol oxidation and liquid-phase oxygen evolution reaction, the activity of the laser-doped catalysts is in good agreement with previous observations on binary iron-cobalt oxides. The catalytic activity was found to linearly increases with the calculated doping depth in both reactions, while only catalysts processed with at least one laser pulse were catalytically stable, highlighting the presented method in providing comparable, active, and stable gradual catalyst doping series for future catalytic studies.


2022 ◽  
Author(s):  
Bangarappa L

Abstract Potentiodynamic polarization measurements indicate that SBs acts as mixed type corrosion inhibitors. the morphology of the mild steel surface is investigated by scanning electron microscopy (SEM) and the surface composition was evaluated using energy-dispersive X-ray Spectroscopy (EDX) to show the presence of SBs on the mild steel surface in 1M HCL. The present study, three Schiff’s bases (SBs) namely 2 (2-hydroxybenzylideneamino) heptanedioic acids, 2 (4-dimethylamino benzlideamino) heptanedioic acids and 2 (4hydroxy-3-methoxybenzylideneamino) heptanedioic acids were synthesized. Using weight loss, potentiodynamic polarization and electromechanical impedance spectroscopy (EIS) techniques for corrosion inhibition properties on mild steel in 1M HCL has been investigated. The adsorption of SBs on the mild steel surface contains Langmuir adsorption isotherm. Here kinetic and thermodynamic parameters also determined to describe the mechanism of adsorption in relevance. The main object of this presentation is experimental study of the inhibiting action of synthesized Schiff’s bases of aldehydes containing nitrogen, oxygen and aromatic rings and Glutamic acid.


2022 ◽  
Vol 715 ◽  
pp. 121942
Author(s):  
Ilona Pleșa ◽  
Simone Radl ◽  
Uwe Schichler ◽  
Franz Ramsauer ◽  
Werner Ladstätter ◽  
...  

Author(s):  
Замир Валериевич Шомахов ◽  
Светлана Сергеевна Налимова ◽  
Рустам Мухамедович Калмыков ◽  
Кирилл Аубекеров ◽  
Вячеслав Алексеевич Мошников

Слои диоксида олова синтезированы гидротермальным методом из водного раствора SnF. Наночастицы серебра осаждены на поверхность полученных слоев методом фотовосстановления. Проведено исследование морфологии поверхности образцов методом атомно-силовой микроскопии. Размер наночастиц серебра зависит от концентрации раствора AgNO, используемого для проведения реакции фотовосстановления. При синтезе из раствора с концентрацией 0,02 М размер полученных наночастиц составляет варьируется от 10 до 100 нм, при увеличении концентрации раствора в два раза размер наночастиц составляет порядка 100 нм. С помощью рентгеновской фотоэлектронной спектроскопии изучен состав поверхности слоев до и после осаждения наночастиц серебра. При выбранных условиях синтеза формируется слой диоксида олова без посторонних включений, и происходит осаждение металлического серебра. Химический сдвиг пиков олова и кислорода после осаждения наночастиц серебра свидетельствует об обмене электронами между оловом и серебром. Полученные слои представляют интерес для применения в области полупроводниковых адсорбционных газовых сенсоров. Tin dioxide layers were synthesized by hydrothermal method from an aqueous solution of SnF. Silver nanoparticles were deposited on the surface of the obtained layers by the photoreduction method. The surface morphology of the samples was studied by atomic force microscopy. The size of the silver nanoparticles depends on the concentration of the AgNO solution used for the photoreduction reaction. When synthesized from 0,02 M solution with a concentration of, the size of the nanoparticles varies from 10 to 100 nm, when the concentration of the solution is doubled, the size of the nanoparticles is about 100 nm. The surface composition of the layers before and after the deposition of silver nanoparticles was studied using the X-ray photoelectron spectroscopy. It was shown that a layer of the tin dioxide is formed without external inclusions, and metallic silver is deposited. The chemical shift of the peaks of tin and oxygen after the deposition of silver nanoparticles indicates the exchange of electrons between tin and silver. The synthesized layers are of interest for application in the field of semiconductor adsorption gas sensors.


2021 ◽  
Author(s):  
Toyin Omojola

Modern operando spectroscopy and microscopy, and kinetic investigations have provided qualitative evidence for active site dynamics, catalyst surface dynamics, and charge transport. On the macroscale, intraparticle and interparticle mass and heat transfer can be tuned to optimise selectivity over heterogeneous catalysts. On the microscale, adsorbate-induced restructuring, adsorbate mobility, surface composition, oxidation states, charge transport, bandgap, and the degree of coordination of the active site have been identified for controlling product selectivity. There exist, however, limited physics-based and data-driven multiscale models that can assimilate these qualitative descriptors in an integrated manner to extract quantitative catalyst activity, stability, and product selectivity descriptors. A multiscale model, which describes the evolution of gas species, adspecie accumulation due to reactivity, stability, lifetime, and mobility, charge transport involving electrons and holes, heat transfer for non-isothermal conditions due to reaction exothermicity, and the changing catalyst states is provided. Dynamical effects are included in these models to bridge the gap between laboratory-scale studies and industrial technical reactors.


Author(s):  
Hanna Klimczak ◽  
Wojciech Kotłowski ◽  
Dagmara Oszkiewicz ◽  
Francesca DeMeo ◽  
Agnieszka Kryszczyńska ◽  
...  

Asteroid taxonomies provide a link to surface composition and mineralogy of those objects, although that connection is not fully unique. Currently, one of the most commonly used asteroid taxonomies is that of Bus-DeMeo. The spectral range covering 0.45–2.45 μm is used to assign a taxonomic class in that scheme. Such observations are only available for a few hundreds of asteroids (out of over one million). On the other hand, a growing amount of space and ground-based surveys delivers multi-filter photometry, which is often used in predicting asteroid types. Those surveys are typically dedicated to studying other astronomical objects, and thus not optimized for asteroid taxonomic classifications. The goal of this study was to quantify the importance and performance of different asteroid spectral features, parameterizations, and methods in predicting the asteroid types. Furthermore, we aimed to identify the key spectral features that can be used to optimize future surveys toward asteroid characterization. Those broad surveys typically are restricted to a few bands; therefore, selecting those that best link them to asteroid taxonomy is crucial in light of maximizing the science output for solar system studies. First, we verified that with the increased number of asteroid spectra, the Bus–DeMeo procedure to create taxonomy still produces the same overall scheme. Second, we confirmed that machine learning methods such as naive Bayes, support vector machine (SVM), gradient boosting, and multilayer networks can reproduce that taxonomic classification at a high rate of over 81% balanced accuracy for types and 93% for complexes. We found that multilayer perceptron with three layers of 32 neurons and stochastic gradient descent solver, batch size of 32, and adaptive learning performed the best in the classification task. Furthermore, the top five features (spectral slope and reflectance at 1.05, 0.9, 0.65, and 1.1 μm) are enough to obtain a balanced accuracy of 93% for the prediction of complexes and six features (spectral slope and reflectance at 1.4, 1.05, 0.9, 0.95, and 0.65 μm) to obtain 81% balanced accuracy for taxonomic types. Thus, to optimize future surveys toward asteroid classification, we recommend using filters that cover those features.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 2061
Author(s):  
Zongsheng He ◽  
Ziyu Li ◽  
Xiaona Jiang ◽  
Chuanjian Wu ◽  
Yu Liu ◽  
...  

This work demonstrates the dependence between magnetic properties and the thickness of NiFe thin films. More importantly, a quantitative study of the surface composition of NiFe thin film exposed to atmospheric conditions has been carried out employing angle-resolved X-ray photoelectron spectroscopy (ARXPS). In this study, we fabricated Ni81Fe19 (NiFe) thin films on Si (100) substrate using electron beam evaporation and investigated their surface morphologies, magnetic properties, and the thickness of the surface oxide layer. The coexistence of metallic and oxidized species on the surface are suggested by the depth profile of ARXPS spectra. The thickness of the oxidized species, including NiO, Ni(OH)2, Fe2O3, and Fe3O4, are also estimated based on the ARXPS results. This work provides an effective approach to clarify the surface composition, as well as the thickness of the oxide layer of the thin films.


2021 ◽  
Vol 12 ◽  
Author(s):  
Stephen Ingram ◽  
Yann Salmon ◽  
Anna Lintunen ◽  
Teemu Hölttä ◽  
Timo Vesala ◽  
...  

Air seeded nanobubbles have recently been observed within tree sap under negative pressure. They are stabilized by an as yet unidentified process, although some embolize their vessels in extreme circumstances. Current literature suggests that a varying surface tension helps bubbles survive, but few direct measurements of this quantity have been made. Here, we present calculations of dynamic surface tension for two biologically relevant lipids using molecular dynamics simulations. We find that glycolipid monolayers resist expansion proportionally to the rate of expansion. Their surface tension increases with the tension applied, in a similar way to the viscosity of a non-Newtonian fluid. In contrast, a prototypical phospholipid was equally resistant to all applied tensions, suggesting that the fate of a given nanobubble is dependent on its surface composition. By incorporating our results into a Classical Nucleation Theory (CNT) framework, we predict nanobubble stability with respect to embolism. We find that the metastable radius of glycolipid coated nanobubbles is approximately 35 nm, and that embolism is in this case unlikely when the external pressure is less negative than –1.5 MPa.


Sign in / Sign up

Export Citation Format

Share Document