scholarly journals Short-term forecasting in road evacuation: calibration of a travel time function

Author(s):  
G. Musolino ◽  
A. Vitetta
2004 ◽  
Vol 8 (2) ◽  
pp. 146-155 ◽  
Author(s):  
William Lam ◽  
K. S. Chan

2016 ◽  
Vol 2016 (4) ◽  
pp. 68-70 ◽  
Author(s):  
P. Chernenko ◽  
◽  
O. Martyniuk ◽  
V. Miroshnyk ◽  
◽  
...  

2020 ◽  
Vol 13 (1) ◽  
pp. 21-36
Author(s):  
I.S. Ivanchenko

Subject. This article analyzes the changes in poverty of the population of the Russian Federation. Objectives. The article aims to identify macroeconomic variables that will have the most effective impact on reducing poverty in Russia. Methods. For the study, I used the methods of logical, comparative, and statistical analyses. Results. The article presents a list of macroeconomic variables that, according to Western scholars, can influence the incomes of the poorest stratum of society and the number of unemployed in the country. The regression analysis based on the selected variables reveals those ones that have a statistically significant impact on the financial situation of the Russian poor. Relevance. The results obtained can be used by the financial market mega-regulator to make anti-poverty decisions. In addition, the models built can be useful to the executive authorities at various levels for short-term forecasting of the number of unemployed and their income in drawing up regional development plans for the areas.


2021 ◽  
Vol 296 ◽  
pp. 126564
Author(s):  
Md Alamgir Hossain ◽  
Ripon K. Chakrabortty ◽  
Sondoss Elsawah ◽  
Michael J. Ryan

2011 ◽  
Vol 6 (1) ◽  
pp. 55-58 ◽  
Author(s):  
C. Gallego ◽  
A. Costa ◽  
A. Cuerva

Abstract. Ramp events are large rapid variations within wind power time series. Ramp forecasting can benefit from specific strategies so as to particularly take into account these shifts in the wind power output dynamic. In the short-term context (characterized by prediction horizons from minutes to a few days), a Regime-Switching (RS) model based on Artificial Neural Nets (ANN) is proposed. The objective is to identify three regimes in the wind power time series: Ramp-up, Ramp-down and No-ramp regime. An on-line regime assessment methodology is also proposed, based on a local gradient criterion. The RS-ANN model is compared to a single-ANN model (without regime discrimination), concluding that the regime-switching strategy leads to significant improvements for one-hour ahead forecasts, mainly due to the improvements obtained during ramp-up events. Including other explanatory variables (NWP outputs, local measurements) during the regime assessment could eventually improve forecasts for further horizons.


Sign in / Sign up

Export Citation Format

Share Document