scholarly journals Robust Low-Tubal-Rank Tensor Completion via Convex Optimization

Author(s):  
Qiang Jiang ◽  
Michael Ng

This paper considers the problem of recovering multidimensional array, in particular third-order tensor, from a random subset of its arbitrarily corrupted entries. Our study is based on a recently proposed algebraic framework in which the tensor-SVD is introduced to capture the low-tubal-rank structure in tensor. We analyze the performance of a convex program, which minimizes a weighted combination of the tensor nuclear norm, a convex surrogate for the tensor tubal rank, and the tensor l1 norm. We prove that under certain incoherence conditions, this program can recover the tensor exactly with overwhelming probability, provided that its tubal rank is not too large and that the corruptions are reasonably sparse. The number of required observations is order optimal (up to a logarithm factor) when comparing with the degrees of freedom of the low-tubal-rank tensor. Numerical experiments verify our theoretical results and real-world applications demonstrate the effectiveness of our algorithm.

2020 ◽  
Vol 29 ◽  
pp. 7233-7244
Author(s):  
Tai-Xiang Jiang ◽  
Michael K. Ng ◽  
Xi-Le Zhao ◽  
Ting-Zhu Huang

2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Liqun Qi ◽  
Chen Ling ◽  
Jinjie Liu ◽  
Chen Ouyang

<p style='text-indent:20px;'>In 2011, Kilmer and Martin proposed tensor singular value decomposition (T-SVD) for third order tensors. Since then, T-SVD has applications in low rank tensor approximation, tensor recovery, multi-view clustering, multi-view feature extraction, tensor sketching, etc. By going through the Discrete Fourier Transform (DFT), matrix SVD and inverse DFT, a third order tensor is mapped to an f-diagonal third order tensor. We call this a Kilmer-Martin mapping. We show that the Kilmer-Martin mapping of a third order tensor is invariant if that third order tensor is taking T-product with some orthogonal tensors. We define singular values and T-rank of that third order tensor based upon its Kilmer-Martin mapping. Thus, tensor tubal rank, T-rank, singular values and T-singular values of a third order tensor are invariant when it is taking T-product with some orthogonal tensors. Some properties of singular values, T-rank and best T-rank one approximation are discussed.</p>


Author(s):  
Canyi Lu ◽  
Jiashi Feng ◽  
Zhouchen Lin ◽  
Shuicheng Yan

The recent proposed Tensor Nuclear Norm (TNN) [Lu et al., 2016; 2018a] is an interesting convex penalty induced by the tensor SVD [Kilmer and Martin, 2011]. It plays a similar role as the matrix nuclear norm which is the convex surrogate of the matrix rank. Considering that the TNN based Tensor Robust PCA [Lu et al., 2018a] is an elegant extension of Robust PCA with a similar tight recovery bound, it is natural to solve other low rank tensor recovery problems extended from the matrix cases. However, the extensions and proofs are generally tedious. The general atomic norm provides a unified view of low-complexity structures induced norms, e.g., the l1-norm and nuclear norm. The sharp estimates of the required number of generic measurements for exact recovery based on the atomic norm are known in the literature. In this work, with a careful choice of the atomic set, we prove that TNN is a special atomic norm. Then by computing the Gaussian width of certain cone which is necessary for the sharp estimate, we achieve a simple bound for guaranteed low tubal rank tensor recovery from Gaussian measurements. Specifically, we show that by solving a TNN minimization problem, the underlying tensor of size n1×n2×n3 with tubal rank r can be exactly recovered when the given number of Gaussian measurements is O(r(n1+n2−r)n3). It is order optimal when comparing with the degrees of freedom r(n1+n2−r)n3. Beyond the Gaussian mapping, we also give the recovery guarantee of tensor completion based on the uniform random mapping by TNN minimization. Numerical experiments verify our theoretical results.


Author(s):  
Yi Yang ◽  
Lixin Han ◽  
Yuanzhen Liu ◽  
Jun Zhu ◽  
Hong Yan

2021 ◽  
Vol 8 (4) ◽  
pp. 691-704
Author(s):  
M. Janane Allah ◽  
◽  
Y. Belaasilia ◽  
A. Timesli ◽  
A. El Haouzi ◽  
...  

In this work, an implicit algorithm is used for analyzing the free dynamic behavior of Functionally Graded Material (FGM) plates. The Third order Shear Deformation Theory (TSDT) is used to develop the proposed model. In this contribution, the formulation is written without any homogenization technique as the rule of mixture. The Hamilton principle is used to establish the resulting equations of motion. For spatial discretization based on Finite Element Method (FEM), a quadratic element with four and eight nodes is adopted using seven degrees of freedom per node. An implicit algorithm is used for solving the obtained problem. To study the accuracy and the performance of the proposed approach, we present comparisons with literature and laminate composite modeling results for vibration natural frequencies. Otherwise, we examine the influence of the exponent of the volume fraction which reacts the plates "P-FGM" and "S-FGM". In addition, we study the influence of the thickness on "E-FGM" plates.


2017 ◽  
Vol 27 (09) ◽  
pp. 1750133 ◽  
Author(s):  
Xia Liu ◽  
Tonghua Zhang

In this paper, the Bogdanov–Takens (B–T) and triple zero bifurcations are investigated for coupled van der Pol–Duffing oscillators with [Formula: see text] symmetry, in the presence of time delays due to the intrinsic response and coupling. Different from previous works, third order unfolding normal forms associated with B–T and triple zero bifurcations are needed, which are obtained by using the normal form theory of delay differential equations. Numerical simulations are also presented to illustrate the theoretical results.


2011 ◽  
Vol 1 (32) ◽  
pp. 15
Author(s):  
Yang-Yih Chen ◽  
Meng-Syue Li ◽  
Hung-Chu Hsu ◽  
Ying-Pin Lin

In this paper, a new third-order Lagrangian asymptotic solution describing nonlinear water wave propagation on the surface of a uniform sloping bottom is presented. The model is formulated in the Lagrangian variables and we use a two-parameter perturbation method to develop a new mathematical derivation. The particle trajectories, wave pressure and Lagrangian velocity potential are obtained as a function of the nonlinear wave steepness  and the bottom slope  perturbed to third order. The analytical solution in Lagrangian form satisfies state of the normal pressure at the free surface. The condition of the conservation of mass flux is examined in detail for the first time. The two important properties in Lagrangian coordinates, Lagrangian wave frequency and Lagrangian mean level, are included in the third-order solution. The solution can also be used to estimate the mean return current for waves progressing over the sloping bottom. The Lagrangian solution untangle the description of the features of wave shoaling in the direction of wave propagation from deep to shallow water, as well as the process of successive deformation of a wave profile and water particle trajectories leading to wave breaking. The proposed model has proved to be capable of a better description of non-linear wave effects than the corresponding approximation of the same order derived by using the Eulerian description. The proposed solution has also been used to determine the wave shoaling process, and the comparisons between the experimental and theoretical results are presented in Fig.1a~1b. In addition, the basic wave-breaking criterion, namely the kinematical Stokes stability condition, has been investigated. The comparisons between the present theory, empirical formula of Goda (2004) and the experiments made by Iwagali et al.(1974), Deo et al.(2003) and Tsai et al.(2005) for the breaking index(Hb/L0) versus the relative water depth(d0/L0) under two different bottom slopes are depicted in Figs 2a~2b. It is found that the theoretical breaking index is well agreement with the experimental results for three bottom slopes. However,for steep slope of 1/3 shown in Fig 2b, the result of Goda‘s empirical formula gives a larger value in comparison with the experimental data and the present theory. Some of empirical formulas presented the breaking wave height in terms of deepwater wave condition, such as in Sunamura (1983) and in Rattanapitikon and Shibayama(2000). Base on the results depicted in Fig. 3a~3b, it showed that the theoretical results are in good agreement with the experimental data (Iwagali et al. 1974, Deo et al.2003 and Tsai et al. 2005) than the empirical formulas. The empirical formula of Sunamura (1983) always predicts an overestimation value.


Sign in / Sign up

Export Citation Format

Share Document