scholarly journals Social Media Analysis using Natural Language Processing Techniques

Author(s):  
Jyotika Singh
2020 ◽  
Author(s):  
Sohini Sengupta ◽  
Sareeta Mugde ◽  
Garima Sharma

Twitter is one of the world's biggest social media platforms for hosting abundant number of user-generated posts. It is considered as a gold mine of data. Majority of the tweets are public and thereby pullable unlike other social media platforms. In this paper we are analyzing the topics related to mental health that are recently (June, 2020) been discussed on Twitter. Also amidst the on-going pandemic, we are going to find out if covid-19 emerges as one of the factors impacting mental health. Further we are going to do an overall sentiment analysis to better understand the emotions of users.


2020 ◽  
Vol 11 (87) ◽  
Author(s):  
Olena Levchenko ◽  
◽  
Nataliia Povoroznik ◽  

In the past decades, sentiment analysis has become one of the most active research areas in natural language processing, data mining, web mining, and information retrieval. The great demand in everyday life and the factor of novelty coupled with the availability of data from social networks have served as strong motivation for research on sentiment-analysis. A number of technical problems, most of which had not been attempted before, either in the NLP or linguistics communities have also generated strong research interests in academia. Sentiment analysis, also called opin-ion mining, is the field of study that analyzes people’s opinions, sentiments, apprais-als, attitudes, and emotions toward entities and their attributes expressed in written text. The entities can be products, services, organizations, individuals, events, issues, or topics. The field represents a large problem space. It improves not only the field of natural language processing but also management, political science, economics, and sociology because all these areas are related to the thoughts of consumers and public. User-generated content is full of opinions, because the main reason why people post messages on social media platforms is to express their views and opinions, and therefore sentiment analysis is at the centre of social media analysis. It turned out that user messages often contain plenty of sarcastic expressions and ambiguous words. Within one opinion both positive and negative sentiments can be present. This also applies to negative particles, which do not always indicate a negative tone. This article investigates four challenges faced by researchers while conducting sentiment analysis, namely: sarcasm, negation, word ambiguity, and multipolarity. These aspects significantly affect the accuracy of the results when we determine a sentiment. Modern approaches to solving the problem are also covered. These are mainly machine learning methods, such as convolutional neural networks (CNN), deep neural networks (DNN), long short-term memory (LTSM), recurrent neural network (RNN), support vector machines (SVM), etc.


2017 ◽  
Vol 7 (3) ◽  
pp. 153-159
Author(s):  
Omer Sevinc ◽  
Iman Askerbeyli ◽  
Serdar Mehmet Guzel

Social media has been widely used in our daily lives, which, in essence, can be considered as a magic box, providing great insights about world trend topics. It is a fact that inferences gained from social media platforms such as Twitter, Faceboook or etc. can be employed in a variety of different fields. Computer science technologies involving data mining, natural language processing (NLP), text mining and machine learning are recently utilized for social media analysis. A comprehensive analysis of social web can discover the trends of the public on any field. For instance, it may help to understand political tendencies, cultural or global believes etc. Twitter is one of the most dominant and popular social media tools, which also provides huge amount of data. Accordingly, this study proposes a new methodology, employing Twitter data, to infer some meaningful information to remarks prominent trend topics successfully. Experimental results verify the feasibility of the proposed approach. Keywords: Social web mining, Tweeter analysis, machine learning, text mining, natural language processing.  


2017 ◽  
Vol 5 (12) ◽  
pp. 287-289
Author(s):  
Aditya . ◽  
◽  
◽  
◽  
hare . ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document