Conceptual Design and Simulation of a Small Hybrid-Electric Unmanned Aerial Vehicle

2006 ◽  
Vol 43 (5) ◽  
pp. 1490-1498 ◽  
Author(s):  
Frederick G. Harmon ◽  
Andrew A. Frank ◽  
Jean-Jacques Chattot
2020 ◽  
Vol 10 (4) ◽  
pp. 1300 ◽  
Author(s):  
Xin Zhao ◽  
Zhou Zhou ◽  
Xiaoping Zhu ◽  
An Guo

This paper describes our work on a small, hand-launched, solar-powered unmanned aerial vehicle (UAV) suitable for low temperatures and high altitudes, which has the perpetual flight potential for conservation missions for rare animals in the plateau area in winter. Firstly, the conceptual design method of a small, solar-powered UAV based on energy balance is proposed, which is suitable for flight in high-altitude and low-temperature area. The solar irradiance model, which can reflect the geographical location and time, was used. Based on the low-temperature discharge test of the battery, a battery weight model considering the influence of low temperature on the battery performance was proposed. Secondly, this paper introduces the detailed design of solar UAV for plateau area, including layout design, structure design, load, and avionics. To increase the proportion of solar cells covered, the ailerons were removed and a rudder was used to control both roll and yaw. Then, the dynamics model of an aileron-free layout UAV was developed, and the differences in maneuverability and stability of aileron-free UAV in plateau and plain areas were analyzed. The control law and trajectory tracking control law were designed for the aileron-free UAV. Finally, the flight test was conducted in Qiangtang, Tibet, at an altitude of 4500 m, China’s first solar-powered UAV to take off and land above 4500 m on the plateau in winter (−30 °C). The test data showed the success of the scheme, validated the conceptual design method and the success of the control system for aileron-free UAV, and analyzed the feasibility of perpetual flight carrying different loads according to the flight energy consumption data.


Aerospace ◽  
2019 ◽  
Vol 6 (3) ◽  
pp. 32 ◽  
Author(s):  
Teresa Donateo ◽  
Claudia Lucia De Pascalis ◽  
Antonio Ficarella

The interest in electric and hybrid electric power system has been increasing, in recent times, due to the benefits of this technology, such as high power-to-weight ratio, reliability, compactness, quietness, and, above all, elimination of local pollutant emissions. One of the key factors of these technologies is the possibility to exploit the synergy between powertrain, structure, and mission. This investigation addresses this topic by applying multi-objective optimization to two test cases — a fixed-wing, tail-sitter, Vertical Take-off and Landing Unmanned Aerial Vehicle (VTOL-UAV), and a Medium-Altitude Long-Endurance Unmanned Aerial Vehicle (MALE-UAV). Cruise time and payload weight were selected as goals for the first optimization problem, while fuel consumption and electric endurance were selected for the second one. The optimizations were performed with Non-dominated Sorting Genetic Algorithm-II (NSGA-II) and S-Metric Selection Evolutionary Multiobjective Algorithm (SMS-EMOA), by taking several constraints into account. The VTOL-UAV optimization was performed, at different levels (structure only, power system only, structure and power system together). To better underline the synergic effect of electrification, the potential benefit of structural integration and multi-functionalization was also addressed. The optimization of the MALE-UAV was performed at two different levels (power system only, power system, and mission profile together), to explore the synergic effect of hybridization. Results showed that large improvements could be obtained, either in the first test case when, both, the powertrain design and the aircraft structure were considered, and in the optimization of the hybrid electric UAV, where the optimization of the aircraft flight path gave a strong contribution to the overall performances.


2021 ◽  
Vol 1173 (1) ◽  
pp. 012055
Author(s):  
M A Moelyadi ◽  
M A Sulthoni ◽  
M F Zulkarnain ◽  
M F Akbar ◽  
B K Assakandari

Sign in / Sign up

Export Citation Format

Share Document