Parameter Variation and the Leading-Edge Vortex of a Rotating Flat Plate

AIAA Journal ◽  
2014 ◽  
Vol 52 (2) ◽  
pp. 348-357 ◽  
Author(s):  
Craig J. Wojcik ◽  
James H. J. Buchholz
2016 ◽  
Vol 57 (4) ◽  
Author(s):  
Anya R. Jones ◽  
Albert Medina ◽  
Hannah Spooner ◽  
Karen Mulleners

Author(s):  
Vivek Nair ◽  
Siddarth Chintamani ◽  
B. H. Dennis

A Numerical Analysis is conducted to investigate the Leading Edge Vortex (LEV) dynamics of an elliptic flat plate undergoing 2 dimensional symmetric flapping motion in hover. The plate is modeled with an aspect ratio of 3 and a flapping trajectory resulting in Reynolds number 225 is studied. The leading edge vortex stability is analyzed as a function of the non dimensional formation number and a vorticity transport analysis is carried to understand the flux budgets present. The LEV formation number is found to be 2.6. The results of vorticity analysis show the highly three dimensional nature of the LEV growth for an elliptic geometry.


2020 ◽  
Vol 61 (9) ◽  
Author(s):  
Johannes Kissing ◽  
Jochen Kriegseis ◽  
Zhenyao Li ◽  
Lihao Feng ◽  
Jeanette Hussong ◽  
...  

Abstract The present study is a prelude to applying different flow control devices on pitching and plunging airfoils with the intention of controlling the growth of the leading edge vortex (LEV); hence, the lift under unsteady stall conditions. As a pre-requisite the parameters influencing the development of the LEV topology must be fully understood and this constitutes the main motivation of the present experimental investigation. The aims of this study are twofold. First, an approach is introduced to validate the comparability between flow fields and LEV characteristics of two different facilities using water and air as working media by making use of a common baseline case. The motivation behind this comparison is that with two facilities the overall parameter range can be significantly expanded. This comparison includes an overview of the respective parameter ranges, control of the airfoil kinematics and careful scrutiny of how post-processing procedures of velocity data from time-resolved particle image velocimetry (PIV) influence the integral properties and topological features used to characterise the LEV development. Second, and based on results coming from both facilities, the appearance of secondary structures and their effect on LEV detachment over an extended parameter range is studied. A Lagrangian flow field analysis based on finite-time Lyapunov Exponent (FTLE) ridges allows precise identification of secondary structures and reveals that their emergence is closely correlated to a vortex Reynolds number threshold computed from the LEV circulation. This threshold is used to model the temporal onset of secondary structures. Further analysis indicates that the emergence of secondary structures causes the LEV to stop accumulating circulation if the shear layer angle at the leading edge of the flat plate has ceased to increase. This information is of particular importance for advanced flow control applications, since efforts to strengthen and/or prolong LEV growth rely on precise knowledge about where and when to apply flow control measures. Graphical abstract


2016 ◽  
Vol 793 ◽  
pp. 229-247 ◽  
Author(s):  
Kyohei Onoue ◽  
Kenneth S. Breuer

We report on the dynamics of the formation and growth of the leading-edge vortex and the corresponding unsteady aerodynamic torque induced by large-scale flow-induced oscillations of an elastically mounted flat plate. All experiments are performed using a high-bandwidth cyber-physical system, which enables the user to access a wide range of structural dynamics using a feedback control system. A series of two-dimensional particle image velocimetry measurements are carried out to characterize the behaviour of the separated flow structures and its relation to the plate kinematics and unsteady aerodynamic torque generation. By modulating the structural properties of the cyber-physical system, we systematically analyse the formation, strength and separation of the leading-edge vortex, and the dependence on kinematic parameters. We demonstrate that the leading-edge vortex growth and strength scale with the characteristic feeding shear-layer velocity and that a potential flow model using the measured vortex circulation and position can, when coupled with the steady moment of the flat plate, accurately predict the net aerodynamic torque on the plate. Connections to previous results on optimal vortex formation time are also discussed.


Sign in / Sign up

Export Citation Format

Share Document