Volume 1: Advances in Aerospace Technology
Latest Publications


TOTAL DOCUMENTS

35
(FIVE YEARS 0)

H-INDEX

2
(FIVE YEARS 0)

Published By American Society Of Mechanical Engineers

9780791858349

Author(s):  
Serge Abrate

The objective of this study is to give an overview of existing theories for analyzing the behavior of sandwich beams and plates and to develop an approach for evaluating their behavior under dynamic loading. The dispersion relations for harmonic wave propagation through sandwich structures are shown to be a sound basis for evaluating whether the individual layers are modeled properly. The results provide a guide in the selection of existing models or the development of new models.



Author(s):  
Andrea Viglietti ◽  
Enrico Zappino ◽  
Erasmo Carrera

Using advanced beam models based on the Carrera Unified Formulation, this paper presents an analysis of a damaged tapered aircraft structure. Results obtained from static and free vibration analyses are presented to evaluate the evolution of the stress and the modal behaviour in a multi-component damaged structure. This 1-D model is able to modify the material proprieties, then the stiffness, at the local level. In this way, many types of local and global damage can be introduced into the structure. The results show the capability of the present model to obtain with a low computational cost, displacements, stresses and vibration characteristics of damaged structures making him a good candidate for design and maintenance tools.



Author(s):  
Anwar Alsulami ◽  
Muhammad Akbar ◽  
Woong Yeol Joe

This paper presents an aerodynamics study of wing morphing by creating a Computational Fluid Dynamics (CFD) model using ANSYS FLUENT. First, known National Advisory Committee for Aeronautics (NACA) 2410 and 8410 profiles of airfoils are modeled. Models are run using prescribed initial and boundary conditions to simulate the morphed wing and flow around it. The Shear Stress Transport (SST) k–ω turbulence model is used to obtain an accurate comparison with the analytical results. Once satisfied with validation, variable cambers between NACA 2410 and 8410 are used in two ends of a wing to mimic a morphed wing situation. Drag and lift coefficients are analyzed for this configuration to understand effects of the airfoil shape on aerodynamic performance. A refined mesh is created near the airfoil wall to capture the flow details. This study is a step forward towards understanding how to accurately model the dynamic morphing of an airplane wing.



Author(s):  
M. Shafiqur Rahman ◽  
Paul J. Schilling ◽  
Paul D. Herrington ◽  
Uttam K. Chakravarty

Electron Beam Additive Manufacturing (EBAM) is one of the emerging additive manufacturing (AM) technologies that is uniquely capable of making full density metallic components using layer-by-layer fabrication method. To build each layer, the process includes powder spreading, pre-heating, melting, and solidification. The thermal and material properties involved in the EBAM process play a vital role to determine the part quality, reliability, and energy efficiency. Therefore, characterizing the properties and understanding the correlations among the process parameters are incumbent to evaluate the performance of the EBAM process. In this study, a three dimensional computational fluid dynamics (CFD) model with Ti-6Al-4V powder has been developed incorporating the temperature-dependent thermal properties and a moving conical volumetric heat source with Gaussian distribution to conduct the simulations of the EBAM process. The melt-pool dynamics and its thermal behavior have been investigated numerically using a CFD solver and results for temperature profile, cooling rate, variation in density, thermal conductivity, specific heat capacity, and enthalpy have been obtained for a particular set of electron beam specifications.



Author(s):  
Rasoul Askari ◽  
Peyman Shoureshi ◽  
Mohammad Reza Soltani ◽  
Afshin Khajeh Fard

The S-shaped air intakes are very common shapes due to their ease in the engine-body integration or Radar Cross Section, RCS, specifications especially for fighter aircrafts. The numerical shape optimization of an S-shaped air intake using adjoint method is conducted. The flow of a specified air intake that uses S-duct M2129 is simulated using three dimensional (3D) numerical solution of Reynolds-Averaged Navier-Stokes equation along with k-ω SST turbulence model. The main purpose of this optimization scheme is to maximize the total pressure recovery (TPR). Further, the scheme is developed in such a way that would be applicable in industry thru satisfying specified constraint requirements. The cross sectional areas of the geometry of duct inlet and outlet (known as engine face) remain unchanged. In addition, small shape modification in each optimization step is considered. Finally after nine optimization cycles new S-shaped air intake geometry with higher TPR and lower distortion (DC) is generated, that would achieve higher performance during its operation.



Author(s):  
Angelos G. Klothakis ◽  
Georgios N. Lygidakis ◽  
Ioannis K. Nikolos

During the past decade considerable efforts have been exerted for the simulation of rarefied gas flows in a wide range of applications, like the flow over suborbital vehicles, in microelectromechanical systems, etc. Such flows appear to be significantly different from those at the continuum regime, making the Navier-Stokes equations to fail without further amendment. In this study an in-house academic CFD solver, named Galatea, is modified appropriately to account for rarefied gases. The no-slip condition on solid walls is no longer valid, hence, velocity slip and temperature jump boundary conditions are applied instead. Additionally, a second-order accurate slip model has been incorporated, namely, this of Beskok and Karniadakis, increasing the accuracy in the same area but avoiding simultaneously the numerical difficulties, entailed by the computation of the second derivative of slip velocity when complex geometries and unstructured grids are coupled. The proposed solver is validated against rarefied laminar flow over a suborbital shuttle, designed by the Azim’UTBM team. The obtained results are compared with those extracted with the parallel open-source kernel SPARTA, which is based on the DSMC method. A satisfactory agreement is reported between the two methodologies, demonstrating the potential of the modified solver to simulate effectively such flows.



Author(s):  
Antonio C. Bertolino ◽  
Giovanni Jacazio ◽  
Stefano Mauro ◽  
Massimo Sorli

Over the past years, a trend toward “more electric” equipment has arisen including flight control systems, leading to a tendency to replace the electro-hydraulic actuators (EHSAs) with electro-mechanical actuators (EMAs), which have however a too high jamming probability for a primary flight control system. An innovative jam tolerant approach is to make the EMA “jam-predictive” by monitoring its health state using effective prognostic algorithms. The need for a high-fidelity model is then paramount. In this study, basing on a typical architecture of an EMA, a detailed analysis of the developed dynamic non-linear ball screw model is presented. The backlash, friction parameters, a model of the rolling/sliding behaviour of a ball with rolling friction are taken into account, contact stiffness and preload are introduced. A discussion is presented on the results of a sensitivity analysis on the efficiency of the mechanism with respect to the above mentioned characteristic parameters under different operating conditions. The model and the results of the sensitivity analysis can be used to better understand the physics within the actuator and the ensuing fault-to-failure mechanisms which are needed for developing more efficient prognostic algorithms.



Author(s):  
Roberto Scigliano ◽  
Giuseppe Pezzella ◽  
Sara Di Benedetto ◽  
Marco Marini ◽  
Johan Steelant

Over the last years, innovative concepts of civil high-speed transportation vehicles were proposed. In this framework, the Hexafly-INT project intends to test in free-flight conditions an innovative gliding vehicle with several breakthrough technologies on-board. This approach will help to gradually increase the readiness level of a consistent number of technologies suitable for hypervelocity flying systems. The vehicle design, manufacturing, assembly and verification is the main driver and challenge in this project. The prime objectives of this free-flying high-speed cruise vehicle shall aim at a conceptual design demonstrating a high aerodynamic efficiency in combination with high internal volume; controlled level flight at a cruise Mach number of 7 to 8;an optimal use of advanced high-temperature materials and structures. Present research describes the aero-thermal design process of the Experimental Flight Test Vehicle, namely EFTV. The glider aeroshape design makes maximum use of databases, expertise, technologies and materials elaborated in previously European community co-funded projects LAPCAT I & II [1][2], ATLLAS I & II [3][4] and HEXAFLY [5]. The paper presents results for both CFD and Finite Element aero-thermal analysis, performed in the most critical phase of the experimental flight leading to the selection of materials for the different components and to a suitable Thermal Protection System.



Author(s):  
Roberto Scigliano ◽  
Marika Belardo ◽  
Mario De Stefano Fumo ◽  
Salvatore Celentano

CIRA has recently set up a research and development project with Italian industrial partners, with the aim of develop hot structures based on ceramic matrix composites technology (C-C/SiC), code named SHS-CMC project. The project focuses on the application of the technology on the control surface of a re-entry vehicle, with the final objective of reaching TRL 5/6, to be spent in more challenging projects such as ESA SPACE RIDER. Thanks to CIRA heritage on ESA EXPERT flap plasma wind tunnel testing, the demonstrator of SHS-CMC project technology will be based on the EXPERT flap geometry, to be tested for final TRL assessment, in more demanding environment such as those of ESA-SPACE RIDER atmospheric re-entry phase. Besides the manufacturing process development it is of paramount importance to have robust and reliable thermal-mechanical models for design, in which both the material anisotropy and the most representative heat transfer phenomena are modelled and validated through test. In the present work the thermal model of the technological demonstrator has been set up. The validation of the model has been obtained trough numerical experimental correlation of PWT test on a similar test article developed in the frame of ESA EXPERT project. The virtual test shows good agreement with experiments in terms of temperature maps. This is the first step to be accomplished before the final qualification test and numerical-experimental validation of the SHS-CMC technology demonstrator, and subsequent TRL assessment.



Author(s):  
Pankaj Rajput ◽  
Sunil Kumar

The main aim of this investigation is to analyze directional noise reduction resulting from asymmetric high momentum fluidic injection downstream of a Mach 0.9 nozzle. Jet noise has been identified as one of the primary obstacles to increasing commercial aviation capacity. Microjets in cross flow are known to enhance turbulent mixing in the shear layer due to the induced stream-wise vortices. This enhanced mixing can be used for reorganizing the spatial distribution of acoustic energy. Targeted reduction in the downward-emitted turbulent mixing noise can be achieved by strategically injecting high momentum fluid downstream of the jet exhaust. Detailed Large Eddy Simulations were performed on a hybrid block structured-unstructured mesh to generate the flow field which was then used for near field and far field noise computation. Aeroacoustic analogy based formulation was used for computing far-field noise estimation. Benchmark cases were validated with preexisting experimental data sets. Mean flow measurements suggest shorter jet core lengths due to the enhanced mixing resulting from fluidic injection. The induced asymmetry due to the fluidic injection gives rise to an asymmetric acoustic field leading to targeted directional noise reduction in the far field as measured by pressure probes.



Sign in / Sign up

Export Citation Format

Share Document