Flow Properties of a Supersonic Turbulent Boundary Layer with Wall Roughness

AIAA Journal ◽  
10.2514/2.862 ◽  
2000 ◽  
Vol 38 (10) ◽  
pp. 1804-1821 ◽  
Author(s):  
Robert M. Latin ◽  
Rodney D. W. Bowersox
AIAA Journal ◽  
2000 ◽  
Vol 38 ◽  
pp. 1804-1821
Author(s):  
Robert M. Latin ◽  
Rodney D. W. Bowersox

2007 ◽  
Vol 129 (8) ◽  
pp. 1083-1100 ◽  
Author(s):  
Noor Afzal

A new approach to scaling of transitional wall roughness in turbulent flow is introduced by a new nondimensional roughness scale ϕ. This scale gives rise to an inner viscous length scale ϕν∕uτ, inner wall transitional variable, roughness friction Reynolds number, and roughness Reynolds number. The velocity distribution, just above the roughness level, turns out to be a universal relationship for all kinds of roughness (transitional, fully smooth, and fully rough surfaces), but depends implicitly on roughness scale. The open turbulent boundary layer equations, without any closure model, have been analyzed in the inner wall and outer wake layers, and matching by the Izakson-Millikan-Kolmogorov hypothesis leads to an open functional equation. An alternate open functional equation is obtained from the ratio of two successive derivatives of the basic functional equation of Izakson and Millikan, which admits two functional solutions: the power law velocity profile and the log law velocity profile. The envelope of the skin friction power law gives the log law, as well as the power law index and prefactor as the functions of roughness friction Reynolds number or skin friction coefficient as appropriate. All the results for power law and log law velocity and skin friction distributions, as well as power law constants are explicitly independent of the transitional wall roughness. The universality of these relations is supported very well by extensive experimental data from transitional rough walls for various different types of roughnesses. On the other hand, there are no universal scalings in traditional variables, and different expressions are needed for various types of roughness, such as inflectional roughness, monotonic roughness, and others. To the lowest order, the outer layer flow is governed by the nonlinear turbulent wake equations that match with the power law theory as well as log law theory, in the overlap region. These outer equations are in equilibrium for constant value of m, the pressure gradient parameter, and under constant eddy viscosity closure model, the analytical and numerical solutions are presented.


1967 ◽  
Vol 18 (2) ◽  
pp. 121-132 ◽  
Author(s):  
M. P. Escudier ◽  
W. B. Nocoll ◽  
D. B. Spalding ◽  
J. H. Whitelaw

SummaryThe paper describes an “explicit” method of predicting the flow properties of a turbulent boundary layer; particular attention is paid to the region in which the growth of the layer is characterised by the decay of a velocity maximum. The validity of the method is tested against the data of Wieghardt and against new data of the present authors; it is shown to be satisfactory. The integral flow properties predicted by the method are used, together with a further assumption, to predict velocity profiles; these closely resemble the measured ones.


2004 ◽  
Vol 2004.2 (0) ◽  
pp. 435-436
Author(s):  
Takatsugu KAMEDA ◽  
Hideo OSAKA ◽  
Shinsuke MOCHIZUKI ◽  
Katsuya HIGAKI

2009 ◽  
Vol 43 (3) ◽  
pp. 734-748 ◽  
Author(s):  
P. Salizzoni ◽  
R. Van Liefferinge ◽  
L. Soulhac ◽  
P. Mejean ◽  
R.J. Perkins

2001 ◽  
Vol 124 (1) ◽  
pp. 127-135 ◽  
Author(s):  
L. Keirsbulck ◽  
L. Labraga ◽  
A. Mazouz ◽  
C. Tournier

A turbulent boundary layer structure which develop over a k-type rough wall displays several differences with those found on a smooth surface. The magnitude of the wake strength depends on the wall roughness. In the near-wall region, the contribution to the Reynolds shear stress fraction, corresponding to each event, strongly depends on the wall roughness. In the wall region, the diffusion factors are influenced by the wall roughness where the sweep events largely dominate the ejection events. This trend is reversed for the smooth-wall. Particle Image Velocimetry technique (PIV) is used to obtain the fluctuating flow field in the turbulent boundary layer in order to confirm this behavior. The energy budget analysis shows that the main difference between rough- and smooth-walls appears near the wall where the transport terms are larger for smooth-wall. Vertical and longitudinal turbulent flux of the shear stress on both smooth and rough surfaces is compared to those predicted by a turbulence model. The present results confirm that any turbulence model must take into account the effects of the surface roughness.


2008 ◽  
Vol 130 (4) ◽  
Author(s):  
Noor Afzal

The present work deals with four new alternate transitional surface roughness scales for description of the turbulent boundary layer. The nondimensional roughness scale ϕ is associated with the transitional roughness wall inner variable ζ=Z+∕ϕ, the roughness friction Reynolds number Rϕ=Rτ∕ϕ, and the roughness Reynolds number Reϕ=Re∕ϕ. The two layer theory for turbulent boundary layers in the variables, mentioned above, is presented by method of matched asymptotic expansions for large Reynolds numbers. The matching in the overlap region is carried out by the Izakson–Millikan–Kolmogorov hypothesis, which gives the velocity profiles and skin friction universal log laws, explicitly independent of surface roughness, having the same constants as the smooth wall case. In these alternate variables, just above the wall roughness level, the mean velocity and Reynolds stresses are universal and do not depend on surface roughness. The extensive experimental data provide very good support to our universal relations. There is no universality of scalings in traditional variables and different expressions are needed for inflectional type roughness, monotonic Colebrook–Moody roughness, k-type roughness, d-type roughness, etc. In traditional variables, the velocity profile and skin friction predictions for the inflectional roughness, k-type roughness, and d-type roughness are supported well by the extensive experimental data. The pressure gradient effect from the matching conditions in the overlap region leads to the universal composite laws, which for weaker pressure gradients yields log laws and for strong adverse pressure gradients provides the half-power laws for universal velocity profiles and in traditional variables the additive terms in the two situations depend on the wall roughness.


Sign in / Sign up

Export Citation Format

Share Document