budget analysis
Recently Published Documents


TOTAL DOCUMENTS

923
(FIVE YEARS 293)

H-INDEX

42
(FIVE YEARS 8)

2022 ◽  
Vol 22 (1) ◽  
pp. 371-393
Author(s):  
Baoye Hu ◽  
Jun Duan ◽  
Youwei Hong ◽  
Lingling Xu ◽  
Mengren Li ◽  
...  

Abstract. Because nitrous acid (HONO) photolysis is a key source of hydroxyl (OH) radicals, identifying the atmospheric sources of HONO is essential to enhance the understanding of atmospheric chemistry processes and improve the accuracy of simulation models. We performed seasonal field observations of HONO in a coastal city of southeastern China, along with measurements of trace gases, aerosol compositions, photolysis rate constants (J), and meteorological parameters. The results showed that the average observed concentration of HONO was 0.54 ± 0.47 ppb. Vehicle exhaust emissions contributed an average of 1.45 % to HONO, higher than the values found in most other studies, suggesting an influence from diesel vehicle emissions. The mean conversion frequency of NO2 to HONO in the nighttime was the highest in summer due to water droplets evaporating under high-temperature conditions. Based on a budget analysis, the rate of emission from unknown sources (Runknown) was highest around midday, with values of 4.51 ppb h−1 in summer, 3.51 ppb h−1 in spring, 3.28 ppb h−1 in autumn, and 2.08 ppb h−1 in winter. Unknown sources made up the largest proportion of all sources in summer (81.25 %), autumn (73.99 %), spring (70.87 %), and winter (59.28 %). The photolysis of particulate nitrate was probably a source in spring and summer while the conversion from NO2 to HONO on BC enhanced by light was perhaps a source in autumn and winter. The variation of HONO at night can be exactly simulated based on the HONO / NOx ratio, while the J(NO3-_R) × pNO3- should be considered for daytime simulations in summer and autumn, or 1/4× (J(NO3-_R) × pNO3-) in spring and winter. Compared with O3 photolysis, HONO photolysis has long been an important source of OH except for summer afternoons. Observation of HONO across four seasons with various auxiliary parameters improves the comprehension of HONO chemistry in southeastern coastal China.


MAUSAM ◽  
2022 ◽  
Vol 52 (3) ◽  
pp. 567-574
Author(s):  
R. K. MALL ◽  
B. R. D. GUPTA ◽  
K. K. SINGH

The Soil-Plant-Atmosphere- Water (SPA W) model has been calibrated and validated using field experiment data from 1991-92 to 1993-94 for wheat crop at Varanasi district. Long-term (1973-74 to 1995-96) daily weather data were combined with general observation of wheat growth and soils to provide daily water budgets for 23 years. The model was calibrated with one year detailed crop growth characteristics and soil water observations and validated with another year soil water observations. The daily-integrated water stress index (WSI) values at the end of crop season correlated quite well with observed grain yield in this region.   The water budget analysis shows a distinct optimum sowing period from 5th to 25th November and  an optimum sowing date on 15th November with minimal water stress index. These results demonstrate the potential of SPA W model for planning irrigation scheduling and water management for wheat crop in this region.


2022 ◽  
Author(s):  
Zhongjing Jiang ◽  
Jing Li

Abstract. Tropospheric ozone is an essential atmospheric component as it plays a significant role in influencing radiation equilibrium and ecological health. It is affected not only by anthropogenic activities but also by natural climate variabilities. Here we examine the tropospheric ozone change in China associated with the Eastern Pacific (EP) and Central Pacific (CP) El Niño using satellite observations from 2007 to 2017 and GEOS-Chem simulations from 1980 to 2017. GEOS-Chem simulations reasonably reproduce the satellite-retrieved lower tropospheric ozone (LTO) changes despite a slight underestimation. Results show that El Niño generally exerts negative impacts on LTO concentration in China, except for southeastern China during the pre-CP El Niño autumn and post-EP El Niño summer. The budget analysis further indicates that for both events, LTO changes are dominated by the transport process controlled by circulation patterns and the chemical process influenced by local meteorological anomalies associated with El Niño, especially the solar radiation and relative humidity changes. The differences between EP and CP-induced LTO changes mostly lie in southern China. The different strengths, positions, and duration of western North Pacific anomalous anticyclone (WNPAC) induced by tropical warming are likely responsible for the different EP and CP LTO changes. During the post-EP El Niño summer, the Indian ocean capacitor also plays an important role in controlling LTO changes over southern China.


2022 ◽  
pp. 1-28

Abstract Realistic ocean subsurface simulations of thermal structure and variation are critically important to the success in climate prediction and projection; currently, substantial systematic subsurface biases still exist in the state-of-the-art ocean and climate models. In this paper, subsurface biases in the tropical Atlantic (TA) are investigated by analyzing simulations from OMIP and conducting POP2-based ocean-only experiments. The subsurface biases are prominent in almost all OMIP simulations, characterized by two warm bias patches off the equator. By conducting two groups of POP2-based ocean-only experiments, two potential origins of the biases are explored, including uncertainties in wind forcing and vertical mixing parameterization, respectively. It is illustrated that the warm bias near 10° N can be slightly reduced by modulating prescribed wind field, and the warm biases over the entire basin are significantly reduced by reducing background diffusivity in the ocean interior in ways to match observations. By conducting heat budget analysis, it is found that the improved subsurface simulations are attributed to the enhanced cooling effect by constraining the vertical mixing diffusivity in terms of the observational estimate, implying that the overestimation of vertical mixing is primarily responsible for the subsurface warm biases in the TA. Since the climate simulation is very sensitive to the vertical mixing parameterization, more accurate representations of ocean vertical mixing are clearly needed in ocean and climate models.


2021 ◽  
Vol 21 (6) ◽  
pp. 357-367
Author(s):  
Taeuk Kang ◽  
Youngkyu Jin ◽  
Hyowon Seo ◽  
Namjoo Lee ◽  
Chang-Sung Kim

Sediment measurement data are utilized as basic data for various river plans and research. The aim of this study is to compare between sediment budget analysis and riverbed monitoring results. The spatial range was from the Gongju-si (Gemganggyo) station to the Buyeo-gun (Baekjegyo) station in Geumgang, and the temporal range in this study was from 2011 to 2016. The estimated change in riverbed amount using the sediment budget analysis was 2,430,243 tons for sediments loaded over six years in the section. The analyzed riverbed changes sedimentation using the riverbed monitoring method were 2,165,146 tons based on the low level and 3,055,489 tons based on the flood level. Based on the riverbed monitoring performance, the relative errors in the sediment budget analysis results through sediment measurements were 10.9% and -25.7% for the low water and flood levels, respectively.


2021 ◽  
Vol 21 (6) ◽  
pp. 369-375
Author(s):  
Sijung Choi ◽  
Seongkyu Kang ◽  
Dongryul Lee

The Daap intake plant located downstream of the Seomjin River was relocated in 2005, and the amount of intake increased. Accordingly, it significantly influenced the change in the flow rate downstream of the Seomjin River. After relocating the Daap intake plant, the production of Corbicula in the downstream of the Seomjin River decreased; there is a demand for investigation into the damage to the downstream fishermen and preparation of countermeasures. An increase in instream flow to increase the production of Corbicula downstream of the Seomjin River may cause difficulties in the stable water supply of the Seomjin River basin; therefore, a preliminary review is necessary. In this study, the supply stability was evaluated through water budget analysis after setting several instream flow at the downstream of the Seomjin River in Gurye-gun (Songjeong-ri). In addition, the supply stability of the water resource system in the Seomjin River according to the instream flow rate was evaluated. It was intended to suggest an alternative to the supply of instream flow. If the instream flow is set large to increase the production of Corbicula, it may cause difficulties in supplying instream flow and problems in supplying water necessary for human activities; therefore, related information must be provided through various analyses.


Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 24
Author(s):  
Adedayo Omisakin ◽  
Rob Mestrom ◽  
Georgi Radulov ◽  
Mark Bentum

An intracortical visual prosthesis plays a vital role in partially restoring the faculty of sight in visually impaired people. Reliable high date rate wireless links are needed for transcutaneous communication. Such wireless communication should receive stimulation data (downlink) and send out neural recorded data (uplink). Hence, there is a need for an implanted transceiver that is low-power and delivers sufficient data rate for both uplink and downlink. In this paper, we propose an integrated circuit (IC) solution based on impulse radio ultrawideband using on-off keying modulation (OOK IR-UWB) for the uplink transmitter, and binary phase-shift keying (BPSK) with sampling and digital detection for the downlink receiver. To make the solution low-power, predominantly digital components are used in the presented transceiver test-chip. Current-controlled oscillators and an impulse generator provide tunability and complete the on-chip integration. The transceiver test-IC is fabricated in 180 nm CMOS technology and occupies only 0.0272 mm2. At 1.3 V power supply, only 0.2 mW is consumed for the BPSK receiver and 0.3 mW for the IR-UWB transmitter in the transceiver IC, while delivering 1 Mbps and 50 Mbps, respectively. Our link budget analysis shows that this test chip is suitable for intracortical integration considering the future off-chip antennas/coils transcutaneous 3–7 mm communication with the outer side. Hence, our work will enable realistic wireless links for the intracortical visual prosthesis.


2021 ◽  
Vol 25 (1) ◽  
pp. 39-47
Author(s):  
Y. P. Ochoa ◽  
Y. J. Abreu ◽  
G. P. Mateo

Relevance. Health management has not escaped the pressure of the current epidemiological situation. In a complex scenario, characterized by the COVID-19 pandemic, the daily dynamics become more complex and greater agility is required for decision-making. Much of the success of those decisions is determined by access to timely information, especially in crisis conditions and limited resources. For this reason, health organizations are interested in knowing the costs of pathologies that frequently constitute causes of hospitalization. In this sense, community - acquired bacterial bronchopneumonia stands out, which is a disease that frequently causes hospitalization of pediatric patients. Objective. This article aims to carry out a partial retrospective financial evaluation in order to determine the costs associated with the treatment of community-acquired bacterial bronchopneumonia in pediatric patients. Materials and methods. The study was developed from the perspective of the health institution General Hospital Guillermo Luis Fernndez Hernndez - Baquero in the city of Moa. For this, the analysis - synthesis and comparative methods were used, as well as the methodology to calculate and analyze disease costs. Results. The research focused on the January-March quarters of the years 2017 and 2018 and provided valuable accounting information regarding the direct and indirect costs of the treatment of the pathology in question, which serves as a tool for the correct management of the hospital institution. Conclusion . The direct costs exceeded the indirect costs and the items that most affected the total cost were the salaries of the workers, food, and medicines used to treat the disease. The need to develop digital health was evidenced, with special emphasis on digital medical records to facilitate access to them and thus avoid the loss of information due to its deterioration. The study provides useful information to the management of the health institution, which serves as support for budget analysis and future projections.


2021 ◽  
Vol 11 (24) ◽  
pp. 11791
Author(s):  
Megersa Kebede Leta ◽  
Tamene Adugna Demissie ◽  
Muhammad Waseem

Hydrological modeling is a technique for understanding hydrologic characteristics and estimation of the water balance of watersheds for integrated water resources development and management. The Soil and Water Assessment Tool (SWAT) model was used for modeling the hydrological behavior of the Nashe watershed in the north-western part of Ethiopia. The spatial data, daily climate, and stream flow were the required input data for the model. The observed monthly stream flow data at the outlet and selected sub-watersheds in the catchment were used to calibrate and validate the model. The model performance was assessed between the simulated and observed streamflow by using sequential uncertainty fitting-2 (SUFI-2), generalized likelihood uncertainty estimation, parameter solution (Parasol) and particle swarm optimization. The sensitivity of 18 parameters was tested, and the most sensitive parameters were identified. The model performance was evaluated using p and r- factor, coefficient of determination, Nash Sutcliffe coefficient efficiency, percent bias during uncertainty analysis, calibration and validation. Therefore, based on the set of proposed evaluation criteria, the SUFI-2 algorithm has been able to provide slightly more reasonable outcomes and Parasol is the worst compared to the other algorithms. An analysis of monthly and seasonal water balance has been also accomplished for the Nashe catchment. The water balance parameters were distinct for the three seasonal periods in the catchment. The seasonal water budget analysis reveals that the watershed receives around 19%, 69%, and 12% of rainfall through the short rain, long rain and dry seasons, respectively. The received precipitation was lost due to evapotranspiration by 29%, 34% and 37% for each season respectively. The surface runoff contributes to the catchment by 5%, 86% and 9% of the water yield.


2021 ◽  
pp. 1-52

Abstract The Arctic atmosphere shows significant variability on intraseasonal timescales of 10-90 days. The intraseasonal variability in the Arctic sea ice is clearly related to that in the Arctic atmosphere. It is well-known that the Arctic mean sea ice state is governed by the local mean atmospheric state. However, the response of the Arctic mean sea ice state to the local atmospheric intraseasonal variability is unclear. The Arctic atmospheric intraseasonal variability exists in both the thermodynamical and dynamical variables. Based on a sea ice-ocean coupled simulation with a quantitative sea ice budget analysis, this study finds that: 1) the intraseasonal atmospheric thermodynamical variability tends to reduce sea ice melting through changing the downward heat flux on the open water area in the marginal sea ice zone, and the intraseasonal atmospheric dynamical variability tends to increase sea ice melting by a combination of modified air-ocean, ice-ocean heat fluxes and sea ice deformation. 2) The intraseasonal atmospheric dynamical variability increases summertime sea ice concentration in the Beaufort Sea and the Greenland Sea but decreases summertime sea ice concentration along the Eurasian continent in the East Siberia-Laptev-Kara Seas, resulting from the joint effects of the modified air-ocean, ice-ocean heat fluxes, the sea ice deformation, as well as the mean sea ice advection due to the changes of sea ice drift. The large spread in sea ice in the CMIP models may be partly attributed to the different model performances in representing the observed atmospheric intraseasonal variability. Reliable modeling of atmospheric intraseasonal variability is an essential condition in correctly projecting future sea ice evolution.


Sign in / Sign up

Export Citation Format

Share Document