Free vibration of pretwisted, cantilevered composite shallow conical shells

AIAA Journal ◽  
1997 ◽  
Vol 35 ◽  
pp. 327-333
Author(s):  
C. W. Lim ◽  
S. Kitipornchai ◽  
K. M. Liew
2021 ◽  
Vol 1885 (3) ◽  
pp. 032059
Author(s):  
Xinghong Li ◽  
Ting Wang ◽  
Yang Zhao ◽  
Hui Wang

2021 ◽  
pp. 109963622110204
Author(s):  
Mehdi Zarei ◽  
Gholamhossien Rahimi ◽  
Davoud Shahgholian-Ghahfarokhi

The free vibration behavior of sandwich conical shells with reinforced cores is investigated in the present study using experimental, analytical, and numerical methods. A new effective smeared method is employed to superimpose the stiffness contribution of skins with those of the stiffener in order to achieve equivalent stiffness of the whole structure. The stiffeners are also considered as a beam to support shear forces and bending moments in addition to the axial forces. Using Donnell’s shell theory and Galerkin method, the natural frequencies of the sandwich shell are subsequently derived. To validate analytical results, experimental modal analysis (EMA) is further conducted on the conical sandwich shell. For this purpose, a method is designed for manufacturing specimens through the filament winding process. For more validation, a finite element model (FEM) is built. The results revealed that all the validations were in good agreement with each other. Based on these analyses, the influence of the cross-sectional area of the stiffeners, the semi-vertex angle of the cone, stiffener orientation angle, and the number of stiffeners are investigated as well. The results achieved are novel and can be thus employed as a benchmark for further studies.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
R. D. Firouz-Abadi ◽  
M. Rahmanian ◽  
M. Amabili

The present study considers the free vibration analysis of moderately thick conical shells based on the Novozhilov theory. The higher order governing equations of motion and the associate boundary conditions are obtained for the first time. Using the Frobenius method, exact base solutions are obtained in the form of power series via general recursive relations which can be applied for any arbitrary boundary conditions. The obtained results are compared with the literature and very good agreement (up to 4%) is achieved. A comprehensive parametric study is performed to provide an insight into the variation of the natural frequencies with respect to thickness, semivertex angle, circumferential wave numbers for clamped (C), and simply supported (SS) boundary conditions.


AIAA Journal ◽  
10.2514/2.96 ◽  
1997 ◽  
Vol 35 (2) ◽  
pp. 327-333 ◽  
Author(s):  
C. W. Lim ◽  
K. M. Liew ◽  
S. Kitipornchai

2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Saira Javed ◽  
F. H. H. Al Mukahal ◽  
M. A. Salama

Free vibration of conical shells of variable thickness is analysed under shear deformation theory with simply supported and clamped free boundary conditions by applying collocation with spline approximation. Sinusoidal thickness variation of layers is assumed in axial direction. Displacements and rotational functions are approximated by Bickley-type splines of order three and a generalized eigenvalue problem is obtained. This problem is solved numerically for an eigenfrequency parameter and an associated eigenvector of spline coefficients. The vibration of composite conical shells consisting of three layers and five layers where each layer is made up of different materials is analysed. Parametric studies are made for analysing the frequencies of the shell with respect to the coefficients of thickness variations, length ratio, cone angle, circumferential node number, and different ply angles with different combinations of the materials. The results are presented in terms of tables and graphs.


Sign in / Sign up

Export Citation Format

Share Document