Mixing enhancement in high-speed turbulent shear layers using excited coherent modes

AIAA Journal ◽  
1998 ◽  
Vol 36 ◽  
pp. 2027-2035
Author(s):  
K. Lee ◽  
T. C. Liu
AIAA Journal ◽  
10.2514/2.303 ◽  
1998 ◽  
Vol 36 (11) ◽  
pp. 2027-2035 ◽  
Author(s):  
K. Lee ◽  
J. T. C. Liu

1990 ◽  
Vol 43 (5S) ◽  
pp. S218-S218
Author(s):  
Marten T. Landahl

By examination of the long-term behavior of an initial three-dimensional and localized disturbance in an inflection-free shear flow a detailed study of the algebraic instability mechanism of an inviscid shear flow (Landahl, 1980) is carried out. It is shown that the vertical velocity component will tend to zero at least as fast as 1/t whereas, as a result of a nonzero liftup of the fluid elements, the streamwise disturbence velocity component will tend to a limiting finite value in a convected frame of reference. For an initial disturbence having a nonzero net vertical momentum along a streamline, the streamwise dimension of the disturbed region is found to grow indefinitely at a rate set by the difference between the maximum and minimum velocities in the parallel flow. The total kinetic energy of the disturbence therefore grows linearly in time through the formation of continuously elongating high-speed or low-speed regions. In these, internal shear layers are formed that intensify through the mechanism of spanwise stretching of the mean vorticity. The effect of a small viscosity is felt primarily in the shear layers so as to make them diffuse and eventually cause the disturbence to decay on a viscous time scale. For the streaky structures near a wall the horizontal pressure gradients are found to be small, making possible a simple approximate treatment of nonlinearty. Such an analysis suggests the possibility of the appearance of a rapid outflow event (“bursting”) from the wall that may occur at a finite time inversely proportional to the amplitude of the initial disturbance. On basis of the analysis presented it is proposed that algebraic growth is the primary mechanism for the formation of streaks in laminar and turbulent shear flows.


2014 ◽  
Vol 6 ◽  
pp. 878679
Author(s):  
Hailong Zhang ◽  
Jiping Wu ◽  
Jian Chen ◽  
Weidong Liu

Nanoparticle-based planar laser scattering (NPLS) experiments and large eddy simulation (LES) were launched to get the fine structure of the supersonic planar mixing layer with finite thickness in the present study. Different from the turbulent development of supersonic planar mixing layer with thin thickness, the development of supersonic planar mixing layer with finite thickness is rapidly. The large-scale structures of mixing layer that possess the characters of quick movement and slow changes transmit to downriver at invariable speed. The transverse results show that the mixing layer is strip of right and dim and possess 3D characteristics. Meanwhile the vortices roll up from two sides to the center. Results indicate that the higher the pressure of the high speed side is, the thicker the mixing layer is. The development of mixing layer is restrained when the pressure of lower speed side is higher. The momentum thickness goes higher with the increase of the clapboard thickness. Through increasing the temperature to change the compression can affect the development of the vortices. The present study can make a contribution to the mixing enhancement and provide initial data for the later investigations.


1978 ◽  
Vol 15 (7) ◽  
pp. 385-386 ◽  
Author(s):  
W.W. Willmarth ◽  
R.F. Gasparovic ◽  
J.M. Maszatics ◽  
J.L. McNaughton ◽  
D.J. Thomas

1977 ◽  
Vol 99 (2) ◽  
pp. 301-308
Author(s):  
C. J. Scott ◽  
D. R. Rask

Two-dimensional, free, turbulent mixing between a uniform stream and a cavity flow is investigated experimentally in a plug nozzle, a geometry that generates idealized mixing layer conditions. Upstream viscous layer effects are minimized through the use of a sharp-expansion plug nozzle. Experimental velocity profiles exhibit close agreement with both similarity analyses and with error function predictions. Refrigerant-12 was injected into the cavity and concentration profiles were obtained using a gas chromatograph. Spreading factors for momentum and mass were determined. Two methods are presented to determine the average turbulent Schmidt number. The relation Sct = Sc is suggested by the data for Sc < 2.0.


Sign in / Sign up

Export Citation Format

Share Document