velocity component
Recently Published Documents


TOTAL DOCUMENTS

291
(FIVE YEARS 53)

H-INDEX

25
(FIVE YEARS 3)

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Haisu Zhang ◽  
Wei Huang

In order to investigate the impact of holistic care on line coagulation and safety in hemodialysis and to address limitations of the conventional ultrasound flow vector imaging (VFM) technique, which requires proprietary software to acquire raw Doppler and scatter tracking data, a combined deep-learning-enabled holistic care approach to line coagulation in hemodialysis is proposed. First, velocity along the direction of the sound beam, which is provided by the color Doppler echocardiogram, is obtained as the radial velocity component using a velocity scale. Moreover, the left ventricular wall contour is automatically identified using a U-Net network and the left ventricular wall velocity is calculated as the boundary condition of continuity equation by a retrained PWC-Net model. Likewise, the velocity component of each blood mass in the vertical direction of the sound beam is obtained by solving the continuity equation (i.e. tangential velocity component). Finally, the velocity vector map of cardiac flow field was synthesized and visualized in the flow diagram. For this purpose, sixty patients admitted to receive hemodialysis from February 2019 to June 2020 were randomly divided into two groups of 30 patients where the control group implemented conventional care and the study group implemented all-round care on the basis of conventional care. The nursing effects of both groups were compared. Incidence of pipeline coagulation and complications in the study group were lower than those in the control group and the difference was statistically significant ( P < 0.05 ). The nursing detail score, nursing attitude score, nursing professionalism score, and total satisfaction score in the study group were higher than those in the control group and the difference was statistically significant ( P < 0.05 ). Applying all-round nursing in hemodialysis can effectively reduce the incidence of line coagulation complications and improve the safety of hemodialysis, as well as improve patients’ satisfaction with nursing care.


2021 ◽  
Author(s):  
Schubert Rene

With this script, the Meridional Overturning Circulation (MOC) can be computed from NEMO ocean-model output for the whole globe or the Atlantic (AMOC), Indic (IMOC) and Pacific (PMOC) subbasins. The MOC is computable in z- and sigma coordinates. Moreover, for nested configurations, it is possible to combine data from both host and nest grids. Finally, it is possible to take into account of that the ORCA model grid is curvilinear north of 20°N: it is possible to compute the northward velocity component from the velocity field in x- and y- directions and to sum up the meridional flux over latitudional bands instead of in x-direction. When both steps are applied, the resulting MOC shows however strong variability in meridional direction. It needs to be clarified, whether this is realistic or not. The software is provided in the form of the jupyter notebook "MOC.ipynb" which includes more informations on the possibilites of the computations and an extensive appendix section with comparisons to computations with cdftools, as well as with details on the computation of the MOC including nest data and taking the curvilinearity of the grid into account. Necessary python modules are listed at the beginning of the document.


2021 ◽  
Author(s):  
Md. A. Hasem

Generally two types of erosion testers are used in solid particle erosion testing: air blast erosion testers and mechanically powered erosion testers. In the first portion of this thesis, the feasibility of implementing a mechanically powered erosion tester for abrasive jet micro-machining applications using very small particles was studied. It was found that, due to the ultrahigh vacuum requirement, such a device would not be practical. Therefore, in the second part of the thesis, the designed rotary mechanism was utilized as a rotary disc target holder apparatus and blasted with a typical air blast system. The apparatus could add or deduct a tangential velocity component into the system, allowing for detailed studies of the effect that the tangential velocity component has on the erosion of borosilicate glass using 25-150 μm aluminum oxide particles. Although the tangential velocity effect has been ignored for brittle materials by most researchers, the present results show that it can have an important role in erosion rate.Generally two types of erosion testers are used in solid particle erosion testing: air blast erosion testers and mechanically powered erosion testers. In the first portion of this thesis, the feasibility of implementing a mechanically powered erosion tester for abrasive jet micro-machining applications using very small particles was studied. It was found that, due to the ultrahigh vacuum requirement, such a device would not be practical. Therefore, in the second part of the thesis, the designed rotary mechanism was utilized as a rotary disc target holder apparatus and blasted with a typical air blast system. The apparatus could add or deduct a tangential velocity component into the system, allowing for detailed studies of the effect that the tangential velocity component has on the erosion of borosilicate glass using 25-150 μm aluminum oxide particles. Although the tangential velocity effect has been ignored for brittle materials by most researchers, the present results show that it can have an important role in erosion rate.


2021 ◽  
Author(s):  
Md. A. Hasem

Generally two types of erosion testers are used in solid particle erosion testing: air blast erosion testers and mechanically powered erosion testers. In the first portion of this thesis, the feasibility of implementing a mechanically powered erosion tester for abrasive jet micro-machining applications using very small particles was studied. It was found that, due to the ultrahigh vacuum requirement, such a device would not be practical. Therefore, in the second part of the thesis, the designed rotary mechanism was utilized as a rotary disc target holder apparatus and blasted with a typical air blast system. The apparatus could add or deduct a tangential velocity component into the system, allowing for detailed studies of the effect that the tangential velocity component has on the erosion of borosilicate glass using 25-150 μm aluminum oxide particles. Although the tangential velocity effect has been ignored for brittle materials by most researchers, the present results show that it can have an important role in erosion rate.Generally two types of erosion testers are used in solid particle erosion testing: air blast erosion testers and mechanically powered erosion testers. In the first portion of this thesis, the feasibility of implementing a mechanically powered erosion tester for abrasive jet micro-machining applications using very small particles was studied. It was found that, due to the ultrahigh vacuum requirement, such a device would not be practical. Therefore, in the second part of the thesis, the designed rotary mechanism was utilized as a rotary disc target holder apparatus and blasted with a typical air blast system. The apparatus could add or deduct a tangential velocity component into the system, allowing for detailed studies of the effect that the tangential velocity component has on the erosion of borosilicate glass using 25-150 μm aluminum oxide particles. Although the tangential velocity effect has been ignored for brittle materials by most researchers, the present results show that it can have an important role in erosion rate.


2021 ◽  
Vol 15 ◽  
Author(s):  
Tania E. Sakanaka ◽  
Martin Lakie ◽  
Raymond F. Reynolds

ObjectiveAre people with a characteristically large physiological sway rendered particularly unstable when standing on a moving surface? Is postural sway in standing individuals idiosyncratic? In this study, we examine postural sway in individuals standing normally, and when subtle continuous sinusoidal disturbances are applied to their support platform. We calculate consistency between conditions to verify if sway can be considered characteristic of each individual. We also correlate two different aspects of participants’ responses to disturbance; their sway velocity and their regulation of body orientation.MethodsNineteen healthy adults (age 29.2 ± 3.2 years) stood freely on footplates coaxially aligned with their ankles and attached to a motorized platform. They had their eyes closed, and hips and knees locked with a light wooden board attached to their body. Participants either stood quietly on a fixed platform or on a slowly tilting platform (0.1 Hz sinusoid; 0.2 and 0.4 deg). Postural sway size was separated into two entities: (1) the spontaneous sway velocity component (natural random relatively rapid postural adjustments, RMS body angular velocity) and (2) the evoked tilt gain component (much slower 0.1 Hz synchronous tilt induced by the movement of the platform, measured as peak-to-peak (p-p) gain, ratio of body angle to applied footplate rotation).ResultsThere was no correlation between the velocity of an individual’s sway and their evoked tilt gain (r = 0.34, p = 0.15 and r = 0.30, p = 0.22). However, when considered separately, each of the two measurements showed fair to good absolute agreement within conditions. Spontaneous sway velocity consistently increased as participants were subjected to increasing disturbance. Participants who swayed more (or less) did so across all conditions [ICC(3,k) = 0.95]. Evoked tilt gain also showed consistency between conditions [ICC(3,k) = 0.79], but decreased from least to most disturbed conditions.ConclusionThe two measurements remain consistent between conditions. Consistency between conditions of two very distinct unrelated measurements reflects the idiosyncratic nature of postural sway. However, sway velocity and tilt gain are not related, which supports the idea that the short-term regulation of stability and the longer-term regulation of orientation are controlled by different processes.


Author(s):  
Won-Ik Cho ◽  
Suck-Joo Na

AbstractA numerical scrutiny was performed to analyze the effect of driving forces on molten pool in gas metal arc welding. In addition to the basic governing equations required for a general heat and mass transfer analysis by computational fluid dynamics, a volume-of-fluid equation for free surface tracking and additional conservation equations for calculating the distribution of alloy elements were used. Driving forces—buoyancy, drag force, arc pressure, electromagnetic force, Marangoni pressure, and droplet impingement—and the arc heat source were mathematically modeled and applied to the simulation. In order to examine the effect of driving forces, a two-dimensional axisymmetric simulation was performed, and the effect of each driving force was analyzed using the velocity components. In the radial velocity component, the effect of droplet impingement and the Marangoni force was large, and in the vertical velocity component, the droplet impingement effect was dominant. A three-dimensional simulation was also performed considering all the driving forces together, and the result was verified by comparison with experimental results. Relatively high alloying element contents were found at the bottom of the fusion zone, which was due to the droplet impingement generating a high vertical velocity.


2021 ◽  
Author(s):  
Ebba Dellwik ◽  
Poul Hummelshøj ◽  
Gerhard Peters

&lt;p&gt;Sonic anemometers provide point observations of the three-dimensional velocity field at high sampling rates and are crucial instruments for understanding and quantifying the fluxes of momentum, energy and scalars between the atmosphere and Earth&amp;#8217;s surface. Since the beginning of sonic anemometry 50 years ago, the characterization of flow distortion, i.e. how the instrument structure alters the flow, has been an ongoing research topic. Multi-path sonic anemometry provides a new opportunity to research and understand flow distortion on the vertical velocity component, since several positions in the small measurement volume can be measured simultaneously. In this work, we use data from a flat terrain measurement campaign in 2020, in which several sonic anemometers were mounted on 4m towers placed 4m apart. The analysis is focused on the Multipath Class-A sonic anemometer (Metek GmbH, Germany), which provides vertical velocity observations from three vertical paths 120 degrees and 0.1m apart. Vertical velocities are also calculated from several combinations of the tilted paths. We investigate how the vertical velocity component is altered depending on wind direction relative to different parts of the instrument structure. We demonstrate that by an optimal combination of the different paths, the vertical velocity variance and fluxes can be significantly enhanced. We also show spectra, and especially look at the high frequency end of the spectrum, where the relative behaviour of the velocity components is known from fundamental turbulence theory. Further, the relative importance of transducer shadowing and pressure-induced blockage effects is discussed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document