mixing enhancement
Recently Published Documents


TOTAL DOCUMENTS

505
(FIVE YEARS 87)

H-INDEX

33
(FIVE YEARS 6)

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1494
Author(s):  
Abdelkader Mahammedi ◽  
Naas Toufik Tayeb ◽  
Kwang-Yong Kim ◽  
Shakhawat Hossain

In this work, a numerical investigation was analyzed to exhibit the mixing behaviors of non-Newtonian shear-thinning fluids in Kenics micromixers. The numerical analysis was performed using the computational fluid dynamic (CFD) tool to solve 3D Navier-Stokes equations with the species transport equations. The efficiency of mixing is estimated by the calculation of the mixing index for different cases of Reynolds number. The geometry of micro Kenics collected with a series of six helical elements twisted 180° and arranged alternately to achieve the higher level of chaotic mixing, inside a pipe with a Y-inlet. Under a wide range of Reynolds numbers between 0.1 to 500 and the carboxymethyl cellulose (CMC) solutions with power-law indices among 1 to 0.49, the micro-Kenics proves high mixing Performances at low and high Reynolds number. Moreover the pressure losses of the shear-thinning fluids for different Reynolds numbers was validated and represented.


2021 ◽  
Vol 931 ◽  
Author(s):  
Hong Liu ◽  
Bin Yu ◽  
Bin Zhang ◽  
Yang Xiang

To investigate the intrinsic mechanism for mixing enhancement by variable-density (VD) behaviour, a canonical VD mixing extracted from a supersonic streamwise vortex protocol, a shock–bubble interaction (SBI), is numerically studied and compared with a counterpart of passive-scalar (PS) mixing. It is meaningful to observe that the maximum concentration decays much faster in a VD SBI than in a PS SBI regardless of the shock Mach number ( $Ma=1.22 - 4$ ). The quasi-Lamb–Oseen-type velocity distribution in the PS SBI is found by analysing the azimuthal velocity that stretches the bubble. Meanwhile, for the VD SBI, an additional stretching enhanced by the secondary baroclinic vorticity (SBV) production contributes to the faster-mixing decay. The underlying mechanism of the SBV-enhanced stretching is further revealed through the density and velocity difference between the light shocked bubble and the heavy ambient air. By combining the SBV-accelerated stretching model and the initial shock compression, a novel mixing time estimation for VD SBI is theoretically proposed by solving the advection–diffusion equation under a deformation field of an axisymmetric vortex with the additional SBV-induced azimuthal velocity. Based on the mixing time model, a mixing enhancement number, defined by the ratio of VD and PS mixing time further, reveals the contribution from the VD effect, which implies a better control of the density distribution for mixing enhancement in a supersonic streamwise vortex.


2021 ◽  
Vol 188 ◽  
pp. 491-504
Author(s):  
Masayuki Anyoji ◽  
Fujio Akagi ◽  
Yu Matsuda ◽  
Yasuhiro Egami ◽  
Taro Handa

Author(s):  
Shuai Yuan ◽  
Bingyan Jiang ◽  
Tao Peng ◽  
Mingyong Zhou ◽  
Dietmar Drummer

Sign in / Sign up

Export Citation Format

Share Document