Computerized generation of symbolic equations of motion for spacecraft

1985 ◽  
Vol 8 (2) ◽  
pp. 284-287 ◽  
Author(s):  
Edwin J. Kreuzer ◽  
Werner O. Schiehlen

Author(s):  
Gilbert Gede ◽  
Dale L. Peterson ◽  
Angadh S. Nanjangud ◽  
Jason K. Moore ◽  
Mont Hubbard

Symbolic equations of motion (EOMs) for multibody systems are desirable for simulation, stability analyses, control system design, and parameter studies. Despite this, the majority of engineering software designed to analyze multibody systems are numeric in nature (or present a purely numeric user interface). To our knowledge, none of the existing software packages are 1) fully symbolic, 2) open source, and 3) implemented in a popular, general, purpose high level programming language. In response, we extended SymPy (an existing computer algebra system implemented in Python) with functionality for derivation of symbolic EOMs for constrained multibody systems with many degrees of freedom. We present the design and implementation of the software and cover the basic usage and workflow for solving and analyzing problems. The intended audience is the academic research community, graduate and advanced undergraduate students, and those in industry analyzing multibody systems. We demonstrate the software by deriving the EOMs of a N-link pendulum, show its capabilities for LATEX output, and how it integrates with other Python scientific libraries — allowing for numerical simulation, publication quality plotting, animation, and online notebooks designed for sharing results. This software fills a unique role in dynamics and is attractive to academics and industry because of its BSD open source license which permits open source or commercial use of the code.



1995 ◽  
Vol 30 (8) ◽  
pp. 1149-1170 ◽  
Author(s):  
Kan Cui ◽  
Imtiaz Haque ◽  
Mukundh Thirumalai


1995 ◽  
Vol 117 (3) ◽  
pp. 441-445 ◽  
Author(s):  
A. G. Lynch ◽  
M. J. Vanderploeg

This paper presents a method for obtaining linearized state space representations of open or closed loop multibody dynamic systems. The paper develops a symbolic formulation for multibody dynamic systems which result in an explicit set of symbolic equations of motion. The symbolic equations are then used to perform symbolic linearizations. The resulting symbolic, linear equations are in terms of the system parameters and the equilibrium point, and are valid for any equilibrium point. Finally, a method is developed for reducing a linearized, constrained multibody system consisting of a mixed set of algebraic-differential equations to a reduced set of differential equations in terms of an independent coordinate set. An example is used to demonstrate the technique.



1966 ◽  
Vol 25 ◽  
pp. 373
Author(s):  
Y. Kozai

The motion of an artificial satellite around the Moon is much more complicated than that around the Earth, since the shape of the Moon is a triaxial ellipsoid and the effect of the Earth on the motion is very important even for a very close satellite.The differential equations of motion of the satellite are written in canonical form of three degrees of freedom with time depending Hamiltonian. By eliminating short-periodic terms depending on the mean longitude of the satellite and by assuming that the Earth is moving on the lunar equator, however, the equations are reduced to those of two degrees of freedom with an energy integral.Since the mean motion of the Earth around the Moon is more rapid than the secular motion of the argument of pericentre of the satellite by a factor of one order, the terms depending on the longitude of the Earth can be eliminated, and the degree of freedom is reduced to one.Then the motion can be discussed by drawing equi-energy curves in two-dimensional space. According to these figures satellites with high inclination have large possibilities of falling down to the lunar surface even if the initial eccentricities are very small.The principal properties of the motion are not changed even if plausible values ofJ3andJ4of the Moon are included.This paper has been published in Publ. astr. Soc.Japan15, 301, 1963.



1974 ◽  
Vol 22 ◽  
pp. 145-148
Author(s):  
W. J. Klepczynski

AbstractThe differences between numerically approximated partial derivatives and partial derivatives obtained by integrating the variational equations are computed for Comet P/d’Arrest. The effect of errors in the IAU adopted system of masses, normally used in the integration of the equations of motion of comets of this type, is investigated. It is concluded that the resulting effects are negligible when compared with the observed discrepancies in the motion of this comet.



2009 ◽  
Vol 37 (2) ◽  
pp. 62-102 ◽  
Author(s):  
C. Lecomte ◽  
W. R. Graham ◽  
D. J. O’Boy

Abstract An integrated model is under development which will be able to predict the interior noise due to the vibrations of a rolling tire structurally transmitted to the hub of a vehicle. Here, the tire belt model used as part of this prediction method is first briefly presented and discussed, and it is then compared to other models available in the literature. This component will be linked to the tread blocks through normal and tangential forces and to the sidewalls through impedance boundary conditions. The tire belt is modeled as an orthotropic cylindrical ring of negligible thickness with rotational effects, internal pressure, and prestresses included. The associated equations of motion are derived by a variational approach and are investigated for both unforced and forced motions. The model supports extensional and bending waves, which are believed to be the important features to correctly predict the hub forces in the midfrequency (50–500 Hz) range of interest. The predicted waves and forced responses of a benchmark structure are compared to the predictions of several alternative analytical models: two three dimensional models that can support multiple isotropic layers, one of these models include curvature and the other one is flat; a one-dimensional beam model which does not consider axial variations; and several shell models. Finally, the effects of internal pressure, prestress, curvature, and tire rotation on free waves are discussed.



Sign in / Sign up

Export Citation Format

Share Document