Validation of a Belt Model for Prediction of Hub Forces from a Rolling Tire4

2009 ◽  
Vol 37 (2) ◽  
pp. 62-102 ◽  
Author(s):  
C. Lecomte ◽  
W. R. Graham ◽  
D. J. O’Boy

Abstract An integrated model is under development which will be able to predict the interior noise due to the vibrations of a rolling tire structurally transmitted to the hub of a vehicle. Here, the tire belt model used as part of this prediction method is first briefly presented and discussed, and it is then compared to other models available in the literature. This component will be linked to the tread blocks through normal and tangential forces and to the sidewalls through impedance boundary conditions. The tire belt is modeled as an orthotropic cylindrical ring of negligible thickness with rotational effects, internal pressure, and prestresses included. The associated equations of motion are derived by a variational approach and are investigated for both unforced and forced motions. The model supports extensional and bending waves, which are believed to be the important features to correctly predict the hub forces in the midfrequency (50–500 Hz) range of interest. The predicted waves and forced responses of a benchmark structure are compared to the predictions of several alternative analytical models: two three dimensional models that can support multiple isotropic layers, one of these models include curvature and the other one is flat; a one-dimensional beam model which does not consider axial variations; and several shell models. Finally, the effects of internal pressure, prestress, curvature, and tire rotation on free waves are discussed.

2000 ◽  
Vol 123 (2) ◽  
pp. 248-257 ◽  
Author(s):  
Hong Yao ◽  
Jian Cao

Methodologies of rapidly assessing maximum possible forming heights are needed for three-dimensional 3D sheet metal forming processes at the preliminary design stage. In our previous work, we proposed to use an axisymmetric finite element model with an enlarged tooling and blank size to calculate the corner failure height in a 3D part forming. The amount of enlargement is called center offset, which provides a powerful means using 2D models for the prediction of 3D forming behaviors. In this work, an analytical beam model to calculate the center offset is developed. Starting from the study of a square cup forming, a simple analytical model is proposed and later generalized to problems with corners of an arbitrary geometry. The 2D axisymmetric models incorporated with calculated center offsets were compared to 3D finite element simulations for various cases. Good assessments of failure height were obtained.


2017 ◽  
Vol 84 (6) ◽  
Author(s):  
Hidenori Murakami

In order to develop an active nonlinear beam model, the beam's kinematics is examined in this paper, by employing the kinematic assumption of a rigid cross section during deformation. As a mathematical tool, the moving frame method, developed by Cartan (1869–1951) on differentiable manifolds, is utilized by treating a beam as a frame bundle on a deforming centroidal curve. As a result, three new integrability conditions are obtained, which play critical roles in the derivation of beam equations of motion. These integrability conditions enable the derivation of beam models in Part II, starting from the three-dimensional Hamilton's principle and the d'Alembert's principle of virtual work. To illustrate the critical role played by the integrability conditions, the variation of kinetic energy is computed. Finally, the reconstruction scheme for rotation matrices for given angular velocity at each time is presented.


Author(s):  
Hidenori Murakami

In order to develop an active nonlinear beam model, the beam’s kinematics is examined by employing the kinematic assumption of a rigid cross section during deformation. As a mathematical tool, the moving frame method, developed by Élie Cartan (1869–1951) on differentiable manifolds, is utilized by treating a beam as a frame bundle on a deforming centroidal curve. As a result, three new integrability conditions are obtained, which play critical roles in the derivation of beam equations of motion. They also serve a role in a geometrically-exact finite-element implementation of beam models. These integrability conditions enable the derivation of beam models starting from the three-dimensional Hamilton’s principle and the d’Alembert principle of virtual work. Finally, the reconstruction scheme for rotation matrices for given angular velocity at each time is presented.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Yue Yuan ◽  
Kuanhai Deng ◽  
Jiangjiang Zhang ◽  
Wenguang Zeng ◽  
Xiangwei Kong ◽  
...  

Purpose This study aims to provide a theoretical basis to evaluate the suitability and integrity of corrosion pipes. Design/methodology/approach The three-dimensional models of the P110S oil pipe with local corrosion damage, general corrosion damage, pitting corrosion damage are established based on the API 579 standard using the nonlinear finite element analysis method for parametric research. Findings The reliability of the model is verified based on the experimental data from the existing literature. The effects of the oil pipe’s size and the corrosion damage’s type on the residual internal pressure strength are simulated and obtained. What’s more, a basic method for predicting the remaining life of corrosion damaged pipes is proposed. Originality/value The authors evaluated the residual strength of various corroded tubing, compared the tubing with different corrosion types and proposed a basic method for predicting the remaining life of the corroded tubing from the corrosion depth.


1975 ◽  
Vol 39 (8) ◽  
pp. 544-546
Author(s):  
HL Wakkerman ◽  
GS The ◽  
AJ Spanauf

2020 ◽  
Vol 17 (4) ◽  
pp. 342-351
Author(s):  
Sergio A. Durán-Pérez ◽  
José G. Rendón-Maldonado ◽  
Lucio de Jesús Hernandez-Diaz ◽  
Annete I. Apodaca-Medina ◽  
Maribel Jiménez-Edeza ◽  
...  

Background: The protozoan Giardia duodenalis, which causes giardiasis, is an intestinal parasite that commonly affects humans, mainly pre-school children. Although there are asymptomatic cases, the main clinical features are chronic and acute diarrhea, nausea, abdominal pain, and malabsorption syndrome. Little is currently known about the virulence of the parasite, but some cases of chronic gastrointestinal alterations post-infection have been reported even when the infection was asymptomatic, suggesting that the cathepsin L proteases of the parasite may be involved in the damage at the level of the gastrointestinal mucosa. Objective: The aim of this study was the in silico identification and characterization of extracellular cathepsin L proteases in the proteome of G. duodenalis. Methods: The NP_001903 sequence of cathepsin L protease from Homo sapienswas searched against the Giardia duodenalisproteome. The subcellular localization of Giardia duodenaliscathepsin L proteases was performed in the DeepLoc-1.0 server. The construction of a phylogenetic tree of the extracellular proteins was carried out using the Molecular Evolutionary Genetics Analysis software (MEGA X). The Robetta server was used for the construction of the three-dimensional models. The search for possible inhibitors of the extracellular cathepsin L proteases of Giardia duodenaliswas performed by entering the three-dimensional structures in the FINDSITEcomb drug discovery tool. Results: Based on the amino acid sequence of cathepsin L from Homo sapiens, 8 protein sequences were identified that have in their modular structure the Pept_C1A domain characteristic of cathepsins and two of these proteins (XP_001704423 and XP_001704424) are located extracellularly. Threedimensional models were designed for both extracellular proteins and several inhibitory ligands with a score greater than 0.9 were identified. In vitrostudies are required to corroborate if these two extracellular proteins play a role in the virulence of Giardia duodenalisand to discover ligands that may be useful as therapeutic targets that interfere in the mechanism of pathogenesis generated by the parasite. Conclusion: In silicoanalysis identified two proteins in the Giardia duodenalisprotein repertoire whose characteristics allowed them to be classified as cathepsin L proteases, which may be secreted into the extracellular medium to act as virulence factors. Three-dimensional models of both proteins allowed the identification of inhibitory ligands with a high score. The results suggest that administration of those compounds might be used to block the endopeptidase activity of the extracellular cathepsin L proteases, interfering with the mechanisms of pathogenesis of the protozoan parasite Giardia duodenalis.


2019 ◽  
Vol 952 (10) ◽  
pp. 47-54
Author(s):  
A.V. Komissarov ◽  
A.V. Remizov ◽  
M.M. Shlyakhova ◽  
K.K. Yambaev

The authors consider hand-held laser scanners, as a new photogrammetric tool for obtaining three-dimensional models of objects. The principle of their work and the newest optical systems based on various sensors measuring the depth of space are described in detail. The method of simultaneous navigation and mapping (SLAM) used for combining single scans into point cloud is outlined. The formulated tasks and methods for performing studies of the DotProduct (USA) hand-held laser scanner DPI?8X based on a test site survey are presented. The accuracy requirements for determining the coordinates of polygon points are given. The essence of the performed experimental research of the DPI?8X scanner is described, including scanning of a test object at various scanner distances, shooting a test polygon from various scanner positions and building point cloud, repeatedly shooting the same area of the polygon to check the stability of the scanner. The data on the assessment of accuracy and analysis of research results are given. Fields of applying hand-held laser scanners, their advantages and disadvantages are identified.


2021 ◽  
Vol 11 (12) ◽  
pp. 5321
Author(s):  
Marcin Barszcz ◽  
Jerzy Montusiewicz ◽  
Magdalena Paśnikowska-Łukaszuk ◽  
Anna Sałamacha

In the era of the global pandemic caused by the COVID-19 virus, 3D digitisation of selected museum artefacts is becoming more and more frequent practice, but the vast majority is performed by specialised teams. The paper presents the results of comparative studies of 3D digital models of the same museum artefacts from the Silk Road area generated by two completely different technologies: Structure from Motion (SfM)—a method belonging to the so-called low-cost technologies—and by Structured-light 3D Scanning (3D SLS). Moreover, procedural differences in data acquisition and their processing to generate three-dimensional models are presented. Models built using a point cloud were created from data collected in the Afrasiyab museum in Samarkand (Uzbekistan) during “The 1st Scientific Expedition of the Lublin University of Technology to Central Asia” in 2017. Photos for creating 3D models in SfM technology were taken during a virtual expedition carried out under the “3D Digital Silk Road” program in 2021. The obtained results show that the quality of the 3D models generated with SfM differs from the models from the technology (3D SLS), but they may be placed in the galleries of the vitrual museum. The obtained models from SfM do not have information about their size, which means that they are not fully suitable for archiving purposes of cultural heritage, unlike the models from SLS.


Sign in / Sign up

Export Citation Format

Share Document