Similar solutions for three-dimensional laminar compressible boundary layers

AIAA Journal ◽  
1964 ◽  
Vol 2 (12) ◽  
pp. 2205-2207 ◽  
Author(s):  
MICHAEL C. FONG

The boundary-layer equations for a compressible fluid are transformed into those for an incompressible fluid, assuming that the boundary is thermally insulating, that the viscosity is proportional to the absolute temperature, and that the Prandtl number is unity. Various results in the theory of incompressible boundary layers are then taken over into the compressible theory. In particular, the existence of ‘similar’ solutions is proved, and Howarth’s method for retarded flows is applied to determine the point of separation for a uniformly retarded main stream velocity. A comparison with an exact solution is used to show that this method gives a closer approximation than does Pohlhausen’s.





2005 ◽  
Vol 19 (28n29) ◽  
pp. 1503-1506
Author(s):  
JIXUE LIU ◽  
DENGBIN TANG ◽  
GUOXING ZHU

Nonparallel stability of the compressible boundary layers for three-dimensional configurations having large curvature variation on the surface is investigated by using the parabolic stability equations, which are derived from the Navier-Stokes equations in the curvilinear coordinate system. The difference schemes with fourth-order accuracy can be used in the entire computational regions. The global method is combined with the local method using a new iterative formula, thus more precise eigenvalues are obtained, and fast convergences are achieved. Computed curves of the amplification factor and shape functions of disturbances show clearly variable process of the flow stability, and agree well with other available results.



Sign in / Sign up

Export Citation Format

Share Document