Comparison of Optimal Control and Differential Game Intercept Missile Guidance Laws

1981 ◽  
Vol 4 (2) ◽  
pp. 109-115 ◽  
Author(s):  
Gerald M. Anderson
2021 ◽  
Vol 146 ◽  
pp. 110940
Author(s):  
Bo Li ◽  
Ranran Zhang ◽  
Ting Jin ◽  
Yadong Shu

2014 ◽  
Vol 629 ◽  
pp. 214-218
Author(s):  
Omar Kassim Ariff ◽  
E. Salami ◽  
M.T. Ahmad ◽  
T.H. Go

Autonomous aerial hard docking is the process where an aircraft approaches and forms a rigid connection with another aircraft. After the docking process is complete, it is not necessary for the lift and propulsion system of the docked aircraft to be operating. Docking allows the larger aircraft to carry the small aircraft outside its airframe, thereby extending the range of endurance of the smaller aircraft. In this paper, we investigate specific scenario where docking occurs between a rotary wing aircraft and a fixed wing aircraft. To perform the above procedure, a guidance system on each platform has to ensure interception while satisfying the primary interception condition of velocity vector co-linearity at the moment of intercept of the two trajectories or flight paths. Pursuit guidance and proportional navigation were assessed as candidates for further development for the terminal docking phase. Since the platforms are in quasi-perfect knowledge of each other, the pursuer evader scenario is replaced by the pursuer-pursuer scenario. The novelty of this work lies in the formulation of terminal constraints, as well as the findings obtained. This paper concludes that contrary to the missile guidance scenario, pursuit based guidance laws provide superior baseline laws from which AAHD guidance and navigation laws can be developed.


2019 ◽  
Vol 41 (10) ◽  
pp. 2957-2969 ◽  
Author(s):  
Chaoyuan Man ◽  
Zhenxing Zhang ◽  
Shihua Li

A composite three-dimensional (3D) missile guidance law is proposed for manoeuvering targets with the consideration of the first-order autopilot dynamics without any linearization. This guidance law consists of a backstepping controller and a feedforward compensation based on disturbance observers. In this control scheme, the unknown target acceleration is regarded as part of the lumped disturbance, estimated by a disturbance observer, and then feedforward compensated. The backstepping controller is introduced to deal with unmatched disturbances. Moreover, both the nonlinear disturbance observer (NDOB) and the generalized proportional integral observer (GPIO) are employed in the derivation. Simulation studies demonstrate the effectiveness of the proposed guidance law, and compare the guidance performance of the two composite guidance laws with different disturbance observers.


2014 ◽  
Vol 1042 ◽  
pp. 172-177
Author(s):  
Guang Yan Xu ◽  
Ping Li ◽  
Biao Zhou

The strategy of unmanned aerial vehicle air combat can be described as a differential game problem. The analytical solutions for the general differential game problem are usually difficult to obtain. In most cases, we can only get its numerical solutions. In this paper, a Nash differential game problem is converted to the corresponding differential variational inequality problem, and then converted into optimal control problem via D-gap function. The nonlinear continuous optimal control problem is obtained, which is easy to get numerical solutions. Compared with other conversion methods, the specific solving process of this method is more simple, so it has certain validity and feasibility.


Sign in / Sign up

Export Citation Format

Share Document