Investigation into Air Interception Guidance Algorithms for Autonomous Aerial Hard Docking of Dissimilar Platforms

2014 ◽  
Vol 629 ◽  
pp. 214-218
Author(s):  
Omar Kassim Ariff ◽  
E. Salami ◽  
M.T. Ahmad ◽  
T.H. Go

Autonomous aerial hard docking is the process where an aircraft approaches and forms a rigid connection with another aircraft. After the docking process is complete, it is not necessary for the lift and propulsion system of the docked aircraft to be operating. Docking allows the larger aircraft to carry the small aircraft outside its airframe, thereby extending the range of endurance of the smaller aircraft. In this paper, we investigate specific scenario where docking occurs between a rotary wing aircraft and a fixed wing aircraft. To perform the above procedure, a guidance system on each platform has to ensure interception while satisfying the primary interception condition of velocity vector co-linearity at the moment of intercept of the two trajectories or flight paths. Pursuit guidance and proportional navigation were assessed as candidates for further development for the terminal docking phase. Since the platforms are in quasi-perfect knowledge of each other, the pursuer evader scenario is replaced by the pursuer-pursuer scenario. The novelty of this work lies in the formulation of terminal constraints, as well as the findings obtained. This paper concludes that contrary to the missile guidance scenario, pursuit based guidance laws provide superior baseline laws from which AAHD guidance and navigation laws can be developed.

Author(s):  
Ruoyu Tan ◽  
Manish Kumar

This paper addresses the problem of controlling a rotary wing Unmanned Aerial Vehicle (UAV) tracking a target moving on ground. The target tracking problem by UAVs has received much attention recently and several techniques have been developed in literature most of which have been applied to fixed wing aircrafts. The use of quadrotor UAVs, the subject of this paper, for target tracking presents several challenges especially for highly maneuvering targets since the development of time-optimal controller (required if target is maneuvering fast) for quadrotor UAVs is extremely difficult due to highly non-linear dynamics. The primary contribution of this paper is the development of a proportional navigation (PN) based method and its implementation on quad-rotor UAVs to track moving ground target. The PN techniques are known to be time-optimal in nature and have been used in literature for developing guidance systems for missiles. There are several types of guidance laws that come within the broad umbrella of the PN method. The paper compares the performance of these guidance laws for their application on quadrotors and chooses the one that performs the best. Furthermore, to apply this method for target tracking instead of the traditional objective of target interception, a switching strategy has also been designed. The method has been compared with respect to the commonly used Proportional Derivative (PD) method for target tracking. The experiments and numerical simulations performed using maneuvering targets show that the proposed tracking method not only carries out effective tracking but also results into smaller oscillations and errors when compared to the widely used PD tracking method.


2000 ◽  
Vol 122 (4) ◽  
pp. 663-668 ◽  
Author(s):  
Der-Cherng Liaw ◽  
Yew-Wen Liang ◽  
Chiz-Chung Cheng

Variable Structure Control (VSC) technique is applied to the design of robust homing missile guidance laws. In the design procedure, the target’s maneuver is assumed to be unpredictable and is considered as disturbances. Guidance laws are then proposed to achieve the interception performance for both cases of longitude-axis control being available and unavailable. The proposed guidance laws are continuous which alleviate chattering drawback by classic VSC design. Results are obtained and compared with those by realistic true proportional navigation design to illustrate the benefits of the proposed design. [S0022-0434(00)00604-3]


Author(s):  
Hui Wang ◽  
Jiang Wang ◽  
Defu Lin

To study the optimal impact-angle-control guidance problem with multiple terminal constraints, a generalized optimal impact-angle-control guidance law with terminal acceleration response constraint (GOIACGL-TARC) is proposed. In the deriving, a time-to-go − nth power weighted object function is adopted to derived the GOIACGL-TARC and a general expression of GOIACGL-TARC is presented. Based on the general expression of GOIACGL-TARC, three guidance laws, GOIACGL-TARC1/TACC0/TACC1 are proposed and the inheritance relationship between GOIACGL-TACC0/TACC1/TARC1 and the conventional optimal guidance law with impact angle constraint is demonstrated. Performance analysis of the proposed guidance laws shows that in the case of GOIACGL-TACC0, the terminal acceleration is not zero at n = 0 and only as n > 0, the terminal acceleration converges to zero; in the case of GOIACGL-TACC1 and GOIACGL-TARC1, GOIACGL-TARC1 can guarantee the acceleration response to reach the exactly zero value but GOIACGL-TACC1 cannot, which can only guarantee the acceleration command to reach the exactly zero value. It is pointed out that compared with the biased proportional navigation guidance law, GOIACGL-TARC1 has an outstanding guidance performance in acceleration response, miss distance, and terminal impact angle error.


INSIST ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 75
Author(s):  
Rahmat Alfi Duhri ◽  
Rianto Adhy Sasongko ◽  
Yayom Dwi Laksmana

This paper will talk about AIM 120 AMRAAM missile guidance for pursuing a moving target. The missile guidance system itself consists of missile dynamics, control system, seeker, and guidance methods. For general purpose, the missile dynamics approach will use non-linear equation of motions. The control surface that will be discussed follow the rule BTT (Bank-to-Turn) and control system that will be used is PID control system that widely used for control design. Lastly, the guidance method that will be studied here is proportional navigation and constant bearing course approach. The simulation will be conducted using MATLAB Simulink. The Simulink model consist of target dynamics, and guidance system. From the result of simulation, it will be shown that the missile can pursue its target quite well. Hence, the simulation system can be used well for preliminary design purpose.Keywords—Homing System, Control System, Proportional Navigation, Missile Dynamics, Seeker, Bank-to-Turn, Constant Bearing Course.


Author(s):  
Rachel Crossland

The conclusion returns to some of the ideas raised in the Introduction, specifically Gillian Beer’s suggestion that literature and science ‘share the moment’s discourse’. It argues for the relevance of this model to different periods and disciplines, while also suggesting some specific potential areas for further development in relation to the present study, including generalist periodicals. It also considers some of the evaluative criteria that have previously been suggested for studies in the field of literature and science, and raises some questions as to the direction in which that field of research should now move. The study concludes finally by suggesting that literature and science, as well as a range of other disciplines, some of which are included here, do more than share the moment’s discourse—they share in the creation, development, and modification of that discourse because they share the moment itself.


Author(s):  
Min-Guk Seo ◽  
Chang-Hun Lee ◽  
Tae-Hun Kim

A new design method for trajectory shaping guidance laws with the impact angle constraint is proposed in this study. The basic idea is that the multiplier introduced to combine the equations for the terminal constraints is used to shape a flight trajectory as desired. To this end, the general form of impact angle control guidance (IACG) is first derived as a function of an arbitrary constraint-combining multiplier using the optimal control. We reveal that the constraint-combining multiplier satisfying the kinematics can be expressed as a function of state variables. From this result, the constraint-combining multiplier to achieve a desired trajectory can be obtained. Accordingly, when the desired trajectory is designed to satisfy the terminal constraints, the proposed method directly can provide a closed form of IACG laws that can achieve the desired trajectory. The potential significance of the proposed result is that various trajectory shaping IACG laws that can cope with various guidance goals can be readily determined compared to existing approaches. In this study, several examples are shown to validate the proposed method. The results also indicate that previous IACG laws belong to the subset of the proposed result. Finally, the characteristics of the proposed guidance laws are analyzed through numerical simulations.


2017 ◽  
Vol 26 (2) ◽  
pp. 341-355 ◽  
Author(s):  
Zhongyuan Chen ◽  
Wanchun Chen ◽  
Xiaoming Liu ◽  
Chuang Song

2011 ◽  
Vol 317-319 ◽  
pp. 727-733
Author(s):  
Shuang Chun Peng ◽  
Liang Pan ◽  
Tian Jiang Hu ◽  
Lin Cheng Shen

A new three-dimensional (3D) nonlinear guidance law is proposed and developed for bank-to-turn (BTT) with motion coupling. First of all, the 3D guidance model is established. In detail, the line-of-sight (LOS) rate model is established with the vector description method, and the kinematics model is divided into three terms of pitching, swerving and coupling, then by using the twist-based method, the LOS direction changing model is built for designing the guidance law with terminal angular constraints. Secondly, the 3D guidance laws are designed with Lyapunov theory, corresponding to no terminal constraints and terminal constraints, respectively. And finally, the simulation results show that the proposed guidance law can effectively satisfy the guidance precision requirements of BTT missile.


Sign in / Sign up

Export Citation Format

Share Document