guidance law
Recently Published Documents


TOTAL DOCUMENTS

1514
(FIVE YEARS 365)

H-INDEX

40
(FIVE YEARS 8)

2022 ◽  
pp. 1-19
Author(s):  
S. Liu ◽  
B. Yan ◽  
R. Liu ◽  
P. Dai ◽  
J. Yan ◽  
...  

Abstract The cooperative guidance problem of multiple inferior missiles intercepting a hypersonic target with the specific impact angle constraint in the two-dimensional plane is addressed in this paper, taking into consideration variations in a missile’s speed. The guidance law is designed with two subsystems: the direction of line-of-sight (LOS) and the direction of normal to LOS. In the direction of LOS, by applying the algebraic graph theory and the consensus theory, the guidance command is designed to make the system convergent in a finite time to satisfy the goal of cooperative interception. In the direction of normal to LOS, the impact angle is constrained to transform into the LOS angle at the time of interception. In view of the difficulty of measuring unknown target acceleration information in real scenarios, the guidance command is designed by utilising a super-twisting algorithm based on a nonsingular fast-terminal sliding mode (NFTSM) surface. Numerical simulation results manifest that the proposed guidance law performs efficiently and the guidance commands are free of chattering. In addition, the overall performance of this guidance law is assessed with Monte Carlo runs in the presence of measurement errors. The simulation results demonstrate that the robustness can be guaranteed, and that overall efficiency and accuracy in intercepting the hypersonic target are achieved.


2022 ◽  
Author(s):  
Mengtang Li ◽  
Beichen Ding

In this paper, we comprehensively present and derive two INDI principle based guidance laws for fixed wing aircrafts. More specifically, two control methods are mathematically derived in detail, where the first decouples the lateral and the longitudinal channels while the second takes the interactions into account. The cumbersome mathematical operations involved in the derivation process aim at reaching a more concise control method and also at providing the community with clearer physical concepts behind this formula. The reason for manipulating transformation matrices is to find a univariate function and to isolate the variable as a virtual input. Efficient and modular guidance control law is then permitted. Lastly, the proposed guidance methods are applied to a 6 dof nonlinear platform under various flight modes to demonstrate the feasibility and advantages.


2022 ◽  
Author(s):  
Mengtang Li ◽  
Beichen Ding

In this paper, we comprehensively present and derive two INDI principle based guidance laws for fixed wing aircrafts. More specifically, two control methods are mathematically derived in detail, where the first decouples the lateral and the longitudinal channels while the second takes the interactions into account. The cumbersome mathematical operations involved in the derivation process aim at reaching a more concise control method and also at providing the community with clearer physical concepts behind this formula. The reason for manipulating transformation matrices is to find a univariate function and to isolate the variable as a virtual input. Efficient and modular guidance control law is then permitted. Lastly, the proposed guidance methods are applied to a 6 dof nonlinear platform under various flight modes to demonstrate the feasibility and advantages.


2022 ◽  
pp. 1-20
Author(s):  
G. Wu ◽  
K. Zhang ◽  
Z. Han

Abstract In order to intercept a highly manoeuvering target with an ideal impact angle in the three-dimensional space, this paper promises to probe into the problem of three-dimensional terminal guidance. With the goal of the highly target acceleration and short terminal guidance time, a guidance law, based on the advanced fast non-singular terminal sliding mode theory, is designed to quickly converge the line-of-sight (LOS) angle and the LOS angular rate within a finite time. In the design process, the target acceleration is regarded as an unknown boundary external disturbance of the guidance system, and the RBF neural network is used to estimate it. In order to improve the estimation accuracy of RBF neural network and accelerate its convergence, the parameters of RBF neural network are adjusted online in real time. At the same time, an adaptive law is designed to compensate the estimation error of the RBF neural network, which improves the convergence speed of the guidance system. Theoretical analysis demonstrates that the state and the sliding manifold of the guidance system converge in finite time. According to Lyapunov theory, the stability of the system can be guaranteed by online adjusting the parameters of RBF neural network and adaptive parameters. The numerical simulation results verify the effectiveness and superiority of the proposed guidance law.


Astrodynamics ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 17-26
Author(s):  
Minwen Guo ◽  
Xiangyu Huang ◽  
Maodeng Li ◽  
Jinchang Hu ◽  
Chao Xu

AbstractTo meet the requirements of the Tianwen-1 mission, adaptive entry guidance for entry vehicles, with low lift-to-drag ratios, limited control authority, and large initial state bias, was presented. Typically, the entry guidance law is divided into four distinct phases: trim angle-of-attack phase, range control phase, heading alignment phase, and trim-wing deployment phase. In the range control phase, the predictor—corrector guidance algorithm is improved by planning an on-board trajectory based on the Mars Science Laboratory (MSL) entry guidance algorithm. The nominal trajectory was designed and described using a combination of the downrange value and other states, such as drag acceleration and altitude rate. For a large initial state bias, the nominal downrange value was modified onboard by weighing the landing accuracy, control authority, and parachute deployment altitude. The biggest advantage of this approach is that it allows the successful correction of altitude errors and the avoidance of control saturation. An overview of the optimal trajectory design process, including a discussion of the design of the initial flight path angle, relevant event trigger, and transition conditions between the four phases, was also presented. Finally, telemetry data analysis and post-flight assessment results were used to illustrate the adaptive guidance law, create good conditions for subsequent parachute reduction and power reduction processes, and gauge the success of the mission.


2022 ◽  
Author(s):  
Prajapati D. Dharmendrabhai ◽  
Akash Gholap ◽  
Nikhil K. Singh ◽  
Sikha Hota

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Wenhui Ma ◽  
Xiaogeng Liang ◽  
Yangwang Fang ◽  
Tianbo Deng ◽  
Wenxing Fu

In order to overcome the drawbacks of the convergence time boundary dependent on tuning parameters in existing finite/fixed-time cooperative guidance law, this paper presents a three-dimensional prescribed-time pinning group cooperative guidance scheme that ensures multiple unpowered missiles to intercept multiple stationary targets. Firstly, combining a prescribed-time scaling function with pinning group consensus theory, the prescribed-time consensus-based cooperative guidance law is proposed. Secondly, the prescribed-time convergence of the proposed pinning group consensus-based cooperative guidance law proves that the convergence can be achieved at a specified time, regardless of initial conditions and parameters. Furthermore, the design steps including two stages of the proposed guidance law are given for engineering application. Extensive simulations are carried out in three cases to verify the properties. Simulation results show the effectiveness and superiority of the proposed prescribed-time consensus-based cooperative guidance scheme.


Sign in / Sign up

Export Citation Format

Share Document