Two composite guidance laws based on the backstepping control and disturbance observers with autopilot lag

2019 ◽  
Vol 41 (10) ◽  
pp. 2957-2969 ◽  
Author(s):  
Chaoyuan Man ◽  
Zhenxing Zhang ◽  
Shihua Li

A composite three-dimensional (3D) missile guidance law is proposed for manoeuvering targets with the consideration of the first-order autopilot dynamics without any linearization. This guidance law consists of a backstepping controller and a feedforward compensation based on disturbance observers. In this control scheme, the unknown target acceleration is regarded as part of the lumped disturbance, estimated by a disturbance observer, and then feedforward compensated. The backstepping controller is introduced to deal with unmatched disturbances. Moreover, both the nonlinear disturbance observer (NDOB) and the generalized proportional integral observer (GPIO) are employed in the derivation. Simulation studies demonstrate the effectiveness of the proposed guidance law, and compare the guidance performance of the two composite guidance laws with different disturbance observers.

Author(s):  
Chaoyuan Man ◽  
Rongjie Liu ◽  
Shihua Li

In this paper, a nonlinear suboptimal guidance system is presented for the missile targeting an unknown arbitrary target. An integrated quadratic performance index is minimized in this guidance law, and the whole design is based on the exact 3D nonlinear missile-target dynamics without any linearization. Considering that the Hamilton–Jacobi–Bellman equation of a nonlinear system is quite difficult to be solved, the [Formula: see text] method is used to obtain the approximate solution without complicated online computations. Moreover, the target accelerations are regarded as the unknown disturbances, and the robustness against the target maneuvering and the external disturbances is enhanced by introducing the feedforward compensation based on the nonlinear disturbance observer. In addition, no priori knowledge like the time-to-go is needed in this suboptimal guidance law. Simulation studies show that the proposed composite guidance system can guarantee that the missile intercepts the arbitrary maneuvering target with satisfied performance.


Author(s):  
Chenqi Zhu

In order to improve the guiding accuracy in intercepting the hypersonic vehicle, this article presents a finite-time guidance law based on the observer and head-pursuit theory. First, based on a two-dimensional model between the interceptor and target, this study applies the fast power reaching law to head-pursuit guidance law so that it can alleviate the chattering phenomenon and ensure the convergence speed. Second, target maneuvers are considered as system disturbances, and the head-pursuit guidance law based on an observer is proposed. Furthermore, this method is extended to a three-dimensional case. Finally, comparative simulation results further verify the superiority of the guidance laws designed in this article.


2011 ◽  
Vol 317-319 ◽  
pp. 727-733
Author(s):  
Shuang Chun Peng ◽  
Liang Pan ◽  
Tian Jiang Hu ◽  
Lin Cheng Shen

A new three-dimensional (3D) nonlinear guidance law is proposed and developed for bank-to-turn (BTT) with motion coupling. First of all, the 3D guidance model is established. In detail, the line-of-sight (LOS) rate model is established with the vector description method, and the kinematics model is divided into three terms of pitching, swerving and coupling, then by using the twist-based method, the LOS direction changing model is built for designing the guidance law with terminal angular constraints. Secondly, the 3D guidance laws are designed with Lyapunov theory, corresponding to no terminal constraints and terminal constraints, respectively. And finally, the simulation results show that the proposed guidance law can effectively satisfy the guidance precision requirements of BTT missile.


Author(s):  
Sheng Sun ◽  
Di Zhou ◽  
Jingyang Zhou ◽  
Kok Lay Teo

The true proportional navigation guidance law, the augmented proportional navigation guidance law, or the adaptive sliding-mode guidance law, is designed based on the planar target-to-missile relative motion dynamics. By a proper construction of a nonlinear Lyapunov function for the line-of-sight angular rates in the three-dimensional guidance dynamics, it is shown that the three guidance laws mentioned above are able to ensure the asymptotic convergence of the angular rates as they are directly applied to the three-dimensional guidance environment. Furthermore, considering the missile autopilot dynamics as a first-order lag, we design three-dimensional nonlinear guidance laws by using the backstepping technique for three cases: (1) the target does not maneuver; (2) the information of target acceleration can be acquired; and (3) the target acceleration is not available but its bound is known a priori. In the first step of the backstepping design of the control law, there is no need to cancel the nonlinear coupling terms in the three-dimensional guidance dynamics in such way that the final expressions of the proposed guidance laws are significantly simplified. Thus, the proposed nonlinear Lyapunov function for the line-of-sight angular rates is a generalized function for designing three-dimensional guidance laws. Simulation results of a missile interception mission show that the proposed guidance laws are highly effective.


2001 ◽  
Author(s):  
Min-Jea Tahk ◽  
Han-Lim Choi ◽  
Hun-Gu Lee ◽  
Yonmook Park

Author(s):  
P Gurfil

This paper derives a new non-linear guidance law aimed at interception of highly manoeuvring targets. The guidance law is developed based on the theory of control Lyapunov functions (CLFs), a methodology for universal stabilization of non-linear systems which is also inverse optimal with respect to some performance measure. The three-dimensional guidance dynamics are formulated in a fixed-line-of-sight coordinate system, yielding matching between the target and missile accelerations. Closed-form expressions for the CLF guidance commands are given. Simulation shows that the new guidance scheme significantly outperforms augmented proportional navigation in short-range engagements.


Author(s):  
Vahid Razmavar ◽  
Heidar Ali Talebi ◽  
Farzaneh Abdollahi

<span>In this article a novel composite control technique is introduced. We added a nonlinear disturbance observer to a nonlinear H_∞ control to form this composite controller. The quadrotor kinematics and dynamics is formulated using euler angles and parameters. After that, this nonlinear robust controller is developed for this flying robot attitude control for the outdoor conditions. Because under these conditions the flying robot, experiences both external disturbance and parametric uncertainty. Stability analysis is also presented to show the global asymptotical stability using a Lyapunov function. The simulation results showed that the suggested composite controller had a better performance in comparison with a nonlinear H_∞ control scheme.</span>


2013 ◽  
Vol 37 (2) ◽  
pp. 231-246
Author(s):  
Chien-Chun Kung ◽  
Feng-Lung Chiang ◽  
Ciann-Dong Yang

The object of this paper is to present a quality control approach to design the navigation constants for missile guidance law that are robust for target’s maneuverability and missile’s performance. Target’s maneuvers and missile's time constants are considered to be noise factors and Taguchi Quality Method (TQM) is used to conduct matrix experiments and determine the robust navigation constants. From the simulation results for three kinds of guidance laws, we find that robust navigation constants have a greater ability to enhance the interception of targets that are performing uncertain maneuvers with less interception time and smaller miss distances in the hitting phase.


Sign in / Sign up

Export Citation Format

Share Document