Thermal Design of a Saturn/Uranus Atmospheric Entry Probe

2020 ◽  
Author(s):  
Michel Blanc ◽  
Kathleen Mandt ◽  
Olivier Mousis ◽  
Nicolas Andre ◽  
Alexis Bouquet ◽  
...  

<p>The comparative study of the different planetary systems accessible to our observations is a unique source of new scientific insight: it can reveal to us the diversity of these systems and of the objects within them, help us better understand their origins and how they work, find and characterize habitable worlds, and ultimately, search for alien life in our galactic neighborhood. But, in the solar system itself, two of its secondary planetary systems, the ice giant systems, as well as their two main objects, Uranus and Neptune, remain poorly explored. We will present an analysis of our current limited knowledge of these systems in the light of six key science questions about planetary systems formulated in the “Planetary Exploration, Horizon 2061” long-term foresight exercise: (Q1) What is the diversity of planetary systems objects? (Q2) What is the diversity of their architectures? (Q3) What do we know of their origins and formation scenarios? (Q4) How do they work? (Q5) Do they host potential habitats? (Q6) Where and how to search for life?</p> <p>We will show that a long-term plan for the space exploration of ice giants and their systems, complemented by the combination of Earth and space-based observations, will provide major contributions to answers to these six questions. In order to do so, we identify the measurements that must be performed in priority to address each of these questions, the destinations to choose (Uranus, Neptune, Triton or a subset of them), and the combinations of space platform(s) (orbiter, atmospheric entry probe(s), lander…) and of  flight sequences needed.</p> <p>Based on this analysis, we look at the different launch windows available until 2061, using a Jupiter fly-by, to send a mission to Uranus or Neptune and find that:</p> <p>(1) a single mission to one of the Ice giants, combining an atmospheric entry probe and an orbiter tour starting on a high-inclination, low-periapse orbit, followed by a sequence of lower- inclination orbits, at least at one of the planets, will make it possible to address a broad range of these key questions;</p> <p>(2) a combination of two well-designed missions to each of the ice giant systems, to be flown in parallel or in sequence, will make it possible to address five out of the six key questions, and to establish the prerequisites for addressing the sixth one. The 2032 Jupiter fly-by window offers a unique opportunity to achieve this goal;</p> <p>(3) if this window cannot be met, using the 2036 Jupiter fly-by window to send a mission to Uranus first, and then the 2045 window for a mission to Neptune, will achieve the same goals. As a back-up option, the feasibility of sending an orbiter + probe mission to one of the planets and using the opportunity of a mission on its way to the interstellar medium to execute a close fly-by of the other planet and deliver a probe into its atmosphere should be studied carefully;</p> <p>(4) based on the expected science return of the first two missions, a third mission focusing on the search for life at a promising moon, namely Triton based on our current knowledge, or perhaps one of the active moons of Uranus after due characterization, can be properly designed.</p> <p>By the 2061 horizon, the first two missions of this plan can be implemented and the design of a third mission focusing on the search for life can be consolidated. Given the likelihood that such a plan may be out of reach of a single national agency, international collaboration is the most promising way to implement it.</p>


2021 ◽  
Author(s):  
David H. Atkinson ◽  
Olivier J. Mousis ◽  
Mark Hofstadter ◽  
Sushil K. Atreya

<p>Understanding the formation and evolution of the solar system and the formation of the giant planets is constrained by inherent limitations in the capabilities of remote sensing. In situ exploration of planetary atmospheres provides key measurements not possible from remote observations, remarkably demonstrated at Jupiter by the Galileo probe, where key measurements included the determination of noble gas abundances and the precise measurement of the Jupiter helium mixing ratio. In this paper, we describe the primary scientific goals to be addressed by future in situ exploration of the ice giants Uranus and Neptune, placing in situ explorations of the gas giants, including the Galileo probe and a future Saturn probe, into a broader solar system context. An ice giant atmospheric entry probe reaching 10 bars would provide insight into both the formation history of the solar system and the giant planets, and the structure and composition of, and physical processes at play within ice giant atmospheres. An entry probe as an element of a future ice giant flagship mission would descend under parachute to measure the abundances and isotopic ratios of the noble gases, D/H in H<sub>2</sub> and <sup>13</sup>C/<sup>12</sup>C, and the thermal structure and dynamics from the upper atmosphere down to the deepest region from which the probe is able to return data, perhaps 10-20 bars or more. Probe data would be returned to Earth using a Carrier Relay Spacecraft as a relay station. The relay spacecraft, particularly if it is an orbiter with a suite of remote sensing instruments, can significantly enhance the science return from the probe; remote sensing provides the global context from which to understand the probe's local measurements of weather and cloud properties. One or more small atmospheric probes could represent a significant ESA contribution to a future NASA New Frontiers or Flagship Ice Giant mission.</p> <p> </p>


1994 ◽  
Vol 31 (5) ◽  
pp. 799-805 ◽  
Author(s):  
M. Tauber ◽  
P. Wercinski ◽  
W. Henline ◽  
J. Paterson ◽  
L. Yang

Sign in / Sign up

Export Citation Format

Share Document