Applications of combined high-thrust, low- thrust propulsion systems

1967 ◽  
Author(s):  
D. DUGAN ◽  
A. MASCY ◽  
S. PITTS
2004 ◽  
Vol 52 (4) ◽  
pp. 421-439
Author(s):  
Hans Seywald ◽  
Carlos M. Roithmayr ◽  
Daniel D. Mazanek ◽  
Frederic H. Stillwagen ◽  
Patrick A. Troutman ◽  
...  

1968 ◽  
Vol 72 (695) ◽  
pp. 925-940 ◽  
Author(s):  
E. G. C. Burt

Summary Orbital manoeuvres by means of impulsive thrusts, such as those available with chemical rockets, are well known, but a different treatment is needed for the small, continuous thrusts that are typical of electrical propulsion systems. It is shown that with the aid of these small forces it is possible to change independently all the orbital elements of a spacecraft, and thus to proceed slowly from a given orbit to any other. For each manoeuvre there exists an equivalent velocity which depends only on the initial and final orbital states, and which can be related directly to the spacecraft propulsion parameters. For any form of propulsion where the propellent acquires some or all of its energy from a separate energy source, as in electrical propulsion, it is found that optimum time-varying relations exist between the flow of mass and of energy, which may also be expressed in terms of the exhaust velocity and the thrust. In particular, the optimum exhaust velocity is shown to be an increasing function of time, related to the way in which the energy is released. The practical realisation of electrical propulsion depends on the development of efficient propulsion units and of lightweight power supplies; these and other spacecraft components are discussed, and a number of examples of orbital manoeuvres are given, including close-Earth, far-Earth and lunar orbits. The paper concludes with a discussion of these orbital transfers in relation to their possible uses, including communication satellites and a test of relativity theory


Author(s):  
O. M. Kharytonov ◽  
S. R. Savchenko ◽  
N. Miranda

Interplanetary missions require fast and fuel-efficient transfers. Combining small times transfers of high-thrust and efficiency of low-thrust propulsion can provide a good compromise. Saving an amount of fuel from the initial high-thrust burn and using it to correct the trajectory could lead to an economy of fuel. We investigated the optimal way to take advantages of both high and low-thrust propulsion benefits in order to maximize the payload mass of the mission. Using a simple model of ideal engine of limited power and the transporting trajectory method, we determined the analytical expression of final payload mass. The solution of the optimization problem gave us the optimal repartition of fuel between high and low-thrust maneuvers for a given thrust of thermal propulsion and electrical power of low-thrust propulsion system. As the mass of the low-thrust propulsion system depends on the electrical power, we took it into account to determine the optimal electrical power for a sprint trajectory in a given time. As a result, we could obtain the interval of transfer time for which the combination of high and low thrust becomes optimal.


Sign in / Sign up

Export Citation Format

Share Document