Thermal constriction resistance of circular contacts on coated surfaces - Effect of contact boundary conditions

Author(s):  
K. NEGUS ◽  
M. YOVANOVICH ◽  
J. THOMPSON
2009 ◽  
Vol 13 (4) ◽  
pp. 659-672 ◽  
Author(s):  
Songbai Ji ◽  
David W. Roberts ◽  
Alex Hartov ◽  
Keith D. Paulsen

2005 ◽  
Vol 128 (1) ◽  
pp. 124-130 ◽  
Author(s):  
Kerem Ün ◽  
Robert L. Spilker

In this study, we extend the penetration method, previously introduced to simulate contact of linear hydrated tissues in an efficient manner with the finite element method, to problems of nonlinear biphasic tissues in contact. This paper presents the derivation of contact boundary conditions for a biphasic tissue with hyperelastic solid phase using experimental kinematics data. Validation of the method for calculating these boundary conditions is demonstrated using a canonical biphasic contact problem. The method is then demonstrated on a shoulder joint model with contacting humerus and glenoid tissues. In both the canonical and shoulder examples, the resulting boundary conditions are found to satisfy the kinetic continuity requirements of biphasic contact. These boundary conditions represent input to a three-dimensional nonlinear biphasic finite element analysis; details of that finite element analysis will be presented in a manuscript to follow.


2001 ◽  
Vol 123 (4) ◽  
pp. 333-340 ◽  
Author(s):  
W. L. Dunbar, ◽  
K. U¨n ◽  
P. S. Donzelli ◽  
R. L. Spilker

We have developed an approximate method for simulating the three-dimensional contact of soft biphasic tissues in diarthrodial joints under physiological loading. Input to the method includes: (i) kinematic information describing an in vitro joint articulation, measured while the cartilage is deformed under physiological loads, (ii) geometric properties for the relaxed (undeformed) cartilage layers, obtained for the analyses in this study via stereophotogrammetry, and (iii) material parameters for the biphasic constitutive relations used to represent cartilage. Solid models of the relaxed tissue layers are assembled in physiological positions, resulting in a mathematical overlap of the cartilage layers. The overlap distribution is quantified and converted via the biphasic governing equations into applied traction boundary conditions for both the solid and fluid phases for each of the contacting layers. Linear, biphasic, three-dimensional, finite element analysis is performed using the contact boundary conditions derived for each of the contacting layers. The method is found to produce results consistent with the continuity requirements of biphasic contact. Comparison with results from independent, biphasic contact analyses of axisymmetric problems shows that the method slightly underestimates the contact area, leading to an overestimation of the total traction, but yields a good approximation to elastic stress and solid phase displacement.


Sign in / Sign up

Export Citation Format

Share Document