coated surfaces
Recently Published Documents


TOTAL DOCUMENTS

889
(FIVE YEARS 177)

H-INDEX

73
(FIVE YEARS 8)

Author(s):  
Hema C. R. Moreira ◽  
Jorge A. B. Oliveira ◽  
Neftali L. V. Carreño ◽  
Ricardo M. Silva ◽  
Irene T. S. Garcia ◽  
...  

Abstract Electrodeposited ZnNi coatings are widely used to improve the corrosion resistance of steel substrates, but their tribological properties are also relevant for loaded contacts under relative motion. This work investigates the hypothesis of improving tribological properties of electrodeposited ZnNi coatings via dispersion of niobium pentoxide nanoparticles (1g/L) in the electrolytic bath. The niobium pentoxide nanoparticles were produced via hydrothermal synthesis assisted by microwave. The surface morphology and chemical composition of the coatings were analysed by scanning electron microscopy coupled with X-ray dispersive energy, X-ray diffraction and X-ray photoelectron spectroscopy. The tribological performance of the coatings was assessed using dry reciprocating ball-on-flat tests at normal loads between 3 and 6 N. The use of niobium pentoxide nanoparticles resulted in significantly denser coatings, with some Nb incorporated in the coated surfaces. Under the lowest normal load, all coated specimens showed relatively low friction (~0.2) and negligible damag. As the normal load increased, the coating produced using niobium pentoxide nanoparticles showed stronger adherence, while conventional ZnNi coating showed increased friction and spalling for the highest load. It is believed that the Nb2O5 nanoparticles increased the number of sites for heterogeneous nucleation, refining the microstructure, so that tougher and more adherent coatings were produced.


2022 ◽  
Vol 0 (0) ◽  
Author(s):  
Zafer Özomay ◽  
Çağla Koşak Söz ◽  
Sinan Sönmez

Abstract In this study the prints were made on paper substrates, which were thought as map substrate alternatives, with 3 different surface properties at 1200 dpi by using the electrophotographic printing system. Color and gloss values of the samples were determined both before and after exposure to light for a period of 42 hours to determine the light fastness of the substrate and the print on it. The studies revealed that after the light fastness tests (i) the width of the color universe of the papers with matte surfaces is more than that of the papers with glossy surfaces, (ii) the loss of brightness of woodfree paper is higher than that of the other paper samples and (iii) the print chroma values obtained in woodfree paper is lower than those of the coated surfaces. Moreover, (iv) the delta E 00 {E_{00}} measurements revealed that all paper samples experienced different color losses in different colors, and the most significant differences in these color losses were in magenta and black.


2022 ◽  
Vol 26 (1) ◽  
Author(s):  
Paula Zwicker ◽  
Thomas Schmidt ◽  
Melanie Hornschuh ◽  
Holger Lode ◽  
Axel Kramer ◽  
...  

Abstract Aim Periprosthetic joint infections are a devastating complication after arthroplasty, leading to rejection of the prosthesis. The prevention of septic loosening may be possible by an antimicrobial coating of the implant surface. Poly (hexamethylene) biguanide hydrochloride [PHMB] seems to be a suitable antiseptic agent for this purpose since previous studies revealed a low cytotoxicity and a long-lasting microbicidal effect of Ti6Al4V alloy coated with PHMB. To preclude an excessive activation of the immune system, possible inflammatory effects on macrophages upon contact with PHMB-coated surfaces alone and after killing of S. epidermidis and P. aeruginosa are analyzed. Methods THP-1 monocytes were differentiated to M0 macrophages by phorbol 12-myristate 13-acetate and seeded onto Ti6Al4V surfaces coated with various amounts of PHMB. Next to microscopic immunofluorescence analysis of labeled macrophages after adhesion on the coated surface, measurement of intracellular reactive oxygen species and analysis of cytokine secretion at different time points without and with previous bacterial contamination were conducted. Results No influence on morphology of macrophages and only slight increases in iROS generation were detected. The cytokine secretion pattern depends on the surface treatment procedure and the amount of adsorbed PHMB. The PHMB coating resulted in a high reduction of viable bacteria, resulting in no significant differences in cytokine secretion as reaction to coated surfaces with and without bacterial burden. Conclusion Ti6Al4V specimens after alkaline treatment followed by coating with 5–7 μg PHMB and specimens treated with H2O2 before PHMB-coating (4 μg) had the smallest influence on the macrophage phienotype and thus are considered as the surface with the best cytocompatibility to macrophages tested in the present study.


2022 ◽  
Vol 961 (1) ◽  
pp. 012061
Author(s):  
Neam F. Mohammed ◽  
Bahaa S. Mahdi ◽  
Amin D. Thamir

Abstract The coated surfaces first layer Ti and second layer TiO2 as coating Nanostructured thin films of using DC sputtering on structural steel (AISI l018) and study characterization of coating SEM/EDS inspection shown a clearly perfect incorporation of layer by dc sputtering a granular structure of the layer with a variable hemisphere’s forms varied from 33 to 46 nm in size. X-XRD test complete for specimen indicates was found anatase phase titanium dioxide, the resulted coating layer of the target of Ti powders gives different morphology from the Ti layer alone The Specimens roughness average of coated Ti and TiO2with respectively was 4.831nm, 7.93 nm. Found that titanium layer will show a major part in increasing the bonding with improving the bond between the substrate steel AISI (1018) and the titanium oxide layer. The Vickers hardness increases when the coating with a layer of titanium with an oxygen content of ceramic layer is formed from 192.3 HV to 227 for Ti as well as important increase was detected in the Tio2 coating to 240 HV. In addition, Ti and Tio2 thin layer considered as a good barrier for hydrogen permeation through steel structure especially at cathode protection in pipelines.


Author(s):  
Rajiva Lochan Mohanty ◽  
Subhakanta Moharana ◽  
Mihir Kumar Das

In the current scenario, CHF study is essential for the safe operation of electronics equipment comprising a two-phase heat transfer process. Therefore, the present experimental investigation involves saturated pool boiling and CHF study of FC 72 over a plain stainless steel surface (SS) and microporous copper-coated SS surfaces under atmospheric conditions. Accordingly, three different plasma-sprayed copper-coated surfaces with coating thicknesses of 65 μm, 105 μm, and 145 μm prepared using micro copper particles of size 25–45 μm. The analysis of the results shows that with an increase in heat flux values, the boiling heat transfer coefficient increases over plain as well as coated surfaces. The plasma-spayed copper-coated surfaces with a coating thickness of 65 μm and 105 μm exhibit a higher boiling heat transfer coefficient as than the plain surface. On the other hand, a 145 μm thick coated surface resulted in a comparable boiling heat transfer coefficient with the plain SS surface. Among the three porous-coated surfaces, the boiling heat transfer coefficient decreases continuously from 65 μm to 145 μm of the coated surface. On the contrary, to the observed nucleate boiling behavior, all the porous-coated surfaces show a higher value of CHF than the plain surface, and the CHF value is found to increase continuously from 65 μm to 145 μm of the coated surfaces. The enhancement of CHF values was found to be 66.29%, 69.17%, and 77.75% for a coating thickness of 65 μm, 105 μm, and 145 μm, respectively, compared with the plain surface. The porous coating thickness of 65 μm shows a greater value of heat transfer coefficient than 105 μm and 145 μm whereas 145 μm exhibits a higher value of CHF as than 65 μm and 105 μm.


2021 ◽  
Author(s):  
Anam Tasneem ◽  
Shubham Parashar ◽  
Tanya Jain ◽  
Simran Aittan ◽  
Jyoti Rautela ◽  
...  

Cell surface glycans, depending on their structures and dynamic modifications, act as the first point of contact and regulate cell-cell, cell-matrix, and cell-pathogen interactions. Particularly, the sialyl-Lewis-X (sLeX, CD15s) tetrasaccharide epitope, expressed on both glycoproteins and gangliosides, participates in leukocyte extravasation via interactions with selectins expressed on endothelial cells, lymphocytes, and platelets (CD62-E/L/P). Neutrophils carrying sLeX epitopes are thought to be responsible for chronic inflammatory diseases resulting in plaque formation and atherosclerosis. Intense efforts have been devoted to the development of sLeX mimetics for inhibition of cell adhesion. On the other hand, dysregulated expression of sLeX and poor extravasation are the major underlying causes of leukocyte adhesion deficiency-II (LAD-II) disorders that result in frequent infections and poor immune response. We hypothesized that metabolic processing of peracetyl N-(cycloalkyl)acyl-D-mannosamine derivatives, through the sialic acid pathway, might result in the expression of sialoglycans with altered hydrophobicity which in-turn could modulate their binding to endogenous lectins, including selectins. Herein, we show that treatment of HL-60 (human acute myeloid leukemia) cells with peracetyl N-cyclobutanoyl-D-mannosamine (Ac4ManNCb), at 50 microM for 48 h, resulted in a robust three to four fold increase in the binding of anti-sLeX (CSLEX1) antibody and enhanced cell adhesion to E-selectin coated surfaces; while the corresponding straight-chain analogue, peracetyl N-pentanoyl-D-mannosamine (Ac4ManNPent), and peracetyl N-cyclopropanoyl-D-mannosamine (Ac4ManNCp) both resulted in 2.0-2.5fold increase compared to controls. The ability to enhance sLeX expression using small molecules has the potential to provide novel opportunities to address challenges in the treatment of immune deficiency disorders.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3383
Author(s):  
Uzair Sajjad ◽  
Imtiyaz Hussain ◽  
Muhammad Imran ◽  
Muhammad Sultan ◽  
Chi-Chuan Wang ◽  
...  

The present study develops a deep learning method for predicting the boiling heat transfer coefficient (HTC) of nanoporous coated surfaces. Nanoporous coated surfaces have been used extensively over the years to improve the performance of the boiling process. Despite the large amount of experimental data on pool boiling of coated nanoporous surfaces, precise mathematical-empirical approaches have not been developed to estimate the HTC. The proposed method is able to cope with the complex nature of the boiling of nanoporous surfaces with different working fluids with completely different thermophysical properties. The proposed deep learning method is applicable to a wide variety of substrates and coating materials manufactured by various manufacturing processes. The analysis of the correlation matrix confirms that the pore diameter, the thermal conductivity of the substrate, the heat flow, and the thermophysical properties of the working fluids are the most important independent variable parameters estimation under consideration. Several deep neural networks are designed and evaluated to find the optimized model with respect to its prediction accuracy using experimental data (1042 points). The best model could assess the HTC with an R2 = 0.998 and (mean absolute error) MAE% = 1.94.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bekir Güney ◽  
Yusuf Dilay ◽  
Moses M. Solomon ◽  
Hüsnü Gerengi ◽  
Adem Özkan ◽  
...  

Abstract 30MnB5 boron alloyed steel surface is coated using different coating techniques, namely 60(Ni-15Cr-4.4Si-3.5Fe-3.2B 0.7C)-40(WC 12Co) metallic powder plasma spray, Fe-28Cr-5C-1Mn alloy wire arc spray, WC-10Co-4Cr (thick) powder high velocity oxy-fuel (HVOF), and WC-10Co-4Cr (fine) diamond jet HVOF. The microstructure of the crude steel sample consists of ferrite and pearlite matrices and iron carbide structures. The intermediate binders are well bonded to the substrate for all coated surfaces. The arc spray coated surface shows the formation of lamellae. The cross-section of HVOF and diamond jet HVOF coated surfaces indicates the formation of WC, W2C Cr, and W parent matrix carbide structures. The corrosion characteristic of the coated steel has been investigated in 3.5 wt.% NaCl solution using electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDAX) techniques. The results reveal that the steel corroded in the medium despite the coatings. However, the extent of corrosion varies. HVOF coated sample demonstrated the highest corrosion resistance while arc spray coated sample exhibited the least. EDAX mapping reveals that the elements in the coatings corroded in the order of their standard electrode potential (SEP). Higher corrosion resistance of HVOF coated sample is linked to the low SEP of tungsten.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Julia R. Davies ◽  
Trupti Kad ◽  
Jessica Neilands ◽  
Bertil Kinnby ◽  
Zdenka Prgomet ◽  
...  

Abstract Background Dysbiosis in subgingival microbial communities, resulting from increased inflammatory transudate from the gingival tissues, is an important factor in initiation and development of periodontitis. Dysbiotic communities are characterized by increased numbers of bacteria that exploit the serum-like transudate for nutrients, giving rise to a proteolytic community phenotype. Here we investigate the contribution of interactions between members of a sub-gingival community to survival and development of virulence in a serum environment—modelling that in the subgingival pocket. Methods Growth and proteolytic activity of three Porphyromonas gingivalis strains in nutrient broth or a serum environment were assessed using A600 and a fluorescent protease substrate, respectively. Adherence of P. gingivalis strains to serum-coated surfaces was studied with confocal microscopy and 2D-gel electrophoresis of bacterial supernatants used to investigate extracellular proteins. A model multi-species sub-gingival community containing Fusobacterium nucleatum, Streptococcus constellatus, Parvimonas micra with wild type or isogenic mutants of P. gingivalis was then created and growth and proteolytic activity in serum assessed as above. Community composition over time was monitored using culture techniques and qPCR. Results The P. gingivalis strains showed different growth rates in nutrient broth related to the level of proteolytic activity (largely gingipains) in the cultures. Despite being able to adhere to serum-coated surfaces, none of the strains was able to grow alone in a serum environment. Together in the subgingival consortium however, all the included species were able to grow in the serum environment and the community adopted a proteolytic phenotype. Inclusion of P. gingivalis strains lacking gingipains in the consortium revealed that community growth was facilitated by Rgp gingipain from P. gingivalis. Conclusions In the multi-species consortium, growth was facilitated by the wild-type and Rgp-expressing strains of P. gingivalis, suggesting that Rgp is involved in delivery of nutrients to the whole community through degradation of complex protein substrates in serum. Whereas they are constitutively expressed by P. gingivalis in nutrient broth, gingipain expression in the model periodontal pocket environment (serum) appeared to be orchestrated through signaling to P. gingivalis from other members of the community, a phenomenon which then promoted growth of the whole community.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7322
Author(s):  
Corneliu Munteanu ◽  
Viorel Paleu ◽  
Bogdan Istrate ◽  
Anişoara Dascălu ◽  
Cornelia Cîrlan Paleu ◽  
...  

Cardan joints are used in transmissions between misaligned shafts, as in all-wheel-drive (AWD) cars and railway applications. Their functioning is accompanied by heavy cyclical loads, with the cardan cross spindles subjected to intensive abrasive wear and pitting. In this paper, a solution to the mentioned issue is proposed, thin anti-wear coatings of Metco 32 and Metco 72 metallic powders deposited by atmospheric plasma spray (APS) on cylindrical samples cut from spindles of two cardan crosses made of 40Cr10 and RUL2 steel. The morphological analysis of the coated surfaces was realized by scanning electron microscopy (SEM), and the elemental composition of the tested samples was elaborated by energy-dispersive X-ray spectroscopy (EDS). To investigate the wear resistance of the coated samples in dry and grease-lubricated conditions, tests at constant load and constant speed were carried out using an AMSLER tribometer. The results of greased tests proved that the expulsion of the lubricant from the tribological contact occurred no matter the combination of coated or uncoated samples. During grease-lubricated tests of ten minutes, the least coefficient of friction was measured for uncoated specimens with better surface finishing; but in dry friction tests, the lowest values of the mean friction coefficients were obtained for the Metco 72 coatings. The porous coatings may act as lubricant reservoirs in long-lasting tests, providing a solution to the expulsion phenomenon of the lubricant to the boundary outside the area of the larger-diameter roller.


Sign in / Sign up

Export Citation Format

Share Document