Vaporization heat transfer of dielectric liquids on enhanced surfaces covered with screen wicks

Author(s):  
C. GU ◽  
L. CHOW ◽  
M. PAIS ◽  
K. BAKER
1993 ◽  
Vol 5 (12) ◽  
pp. 3273-3279 ◽  
Author(s):  
P. J. Stiles ◽  
F. Lin ◽  
P. J. Blennerhassett

Energy ◽  
2015 ◽  
Vol 93 ◽  
pp. 854-863 ◽  
Author(s):  
Yiping Wang ◽  
Hailing Fu ◽  
Qunwu Huang ◽  
Yong Cui ◽  
Yong Sun ◽  
...  

Author(s):  
Nihal E. Joshua ◽  
Denesh K. Ajakumar ◽  
Huseyin Bostanci

This study experimentally investigated the effect of hydrophobic patterned surfaces in nucleate boiling heat transfer. A dielectric liquid, HFE-7100, was used as the working fluid in the saturated boiling tests. Dielectric liquids are known to have highly-wetting characteristics. They tend to fill surface cavities that would normally trap vapor/gas, and serve as active nucleation sites during boiling. With the lack of these vapor filled cavities, boiling of a dielectric liquid leads to high incipience superheats and accompanying temperature overshoots. Heater samples in this study were prepared by applying a thin Teflon (AF400, Dupont) coating on 1-cm2 smooth copper surfaces following common photolithography techniques. Matching size thick film resistors, attached onto the copper samples, generated heat and simulated high heat flux electronic devices. Tests investigated the heater samples featuring circular pattern sizes between 40–100 μm, and corresponding pitch sizes between 80–200 μm. Additionally, a plain, smooth copper surface was tested to obtain reference data. Based on data, hydrophobic patterned surfaces effectively eliminated the temperature overshoot at boiling incipience, and considerably improved nucleate boiling performance in terms of heat transfer coefficient and critical heat flux over the reference surface. Hydrophobic patterned surfaces therefore demonstrated a practical surface modification method for heat transfer enhancement in immersion cooling applications.


2020 ◽  
Vol 1599 ◽  
pp. 012051
Author(s):  
S Bortolin ◽  
M Azzolin ◽  
A Berto ◽  
C Guzzardi ◽  
D Del Col

2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Andrea Padovan ◽  
Stefano Bortolin ◽  
Marco Rossato ◽  
Sauro Filippeschi ◽  
Davide Del Col

This paper deals with vaporization heat transfer in a small diameter closed two-phase thermosyphon with a long evaporator and a short condenser, filled with water as operating fluid. The internal diameter of the evaporator is equal to 6.4 mm and the length-to-diameter ratio at the evaporator is equal to 166. A similar geometry is commonly used in vacuumed tube solar collectors. In the present investigation, the input power to the evaporator is provided by means of an electrical resistance wire wrapped around the external wall of the tube, while a water jacket is built at the condenser to reject the heat. The performance of the thermosyphon is described by using the wall temperature and the overall thermal resistance for different operating conditions: input power at the evaporator, cooling water temperature at the condenser, and inclination of the thermosyphon (30 deg, 60 deg, and 90 deg tilt angle to the horizontal plane). The present experimental data cover a range of heat flux between 1700 and 8000 W/m2 and saturation temperature between 28 °C and 72 °C. The vaporization heat transfer coefficients are compared with some correlations for closed two-phase thermosyphons displaying large disagreement. A new correlation is presented, which accurately predicts the present experimental values and other data by independent labs taken in closed two-phase thermosyphons, varying geometry and operating fluid (water, R134a, and ethanol).


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Matthew R. Pearson ◽  
Jamal Seyed-Yagoobi

Microchannels have well-known applications in cooling because of their ability to handle large quantities of heat from small areas. Electrohydrodynamic (EHD) conduction pumping at the microscale has previously been demonstrated to effectively pump dielectric liquids through adiabatic microchannels by using electrodes that are flushed against the walls of the channel. In this study, an EHD micropump is used to pump liquid within a two-phase loop that contains a microchannel evaporator. Additional EHD electrodes are embedded within the evaporator, which can be energized separately from the adiabatic pump. The effect of these embedded electrodes on the heat transport process, flow rate, and pressure in the micro-evaporator and on the two-phase loop system is characterized. Local enhancements are found to be up to 30% at low heat fluxes. The reverse effect that phase-change has on the EHD conduction pumping phenomenon is also quantified.


Sign in / Sign up

Export Citation Format

Share Document