Application of Parallel Processing to Probabilistic Fracture Mechanics Analysis of Gas Turbine Disks

Author(s):  
Harry Millwater ◽  
Brian Shook ◽  
Shirdah Guduru ◽  
George Constantinides
2020 ◽  
Vol 7 (3) ◽  
pp. 19-00573-19-00573
Author(s):  
Kai LU ◽  
Jinya KATSUYAMA ◽  
Yinsheng LI ◽  
Yuhei MIYAMOTO ◽  
Takatoshi HIROTA ◽  
...  

Author(s):  
C. G. Annis ◽  
M. C. VanWanderham ◽  
J. A. Harris ◽  
D. L. Sims

Historically, gas turbine engine disks are retired when they accrue an analytically determined lifetime where the first fatigue crack per 1000 disks could be expected. By definition then, 99.9 percent of these components are being retired prematurely. Retirement-for-Cause (RFC) is a procedure, based on Fracture Mechanics, which would allow safe utilization of the full life capacities of each individual disk. Since gas turbine disks are among the most costly of engine components, adopting a RFC philosophy could result in substantial systems life cycle cost savings. These would accrue from reduced replacement costs, conservation of strategic materials such as cobalt, and energy savings.


Sign in / Sign up

Export Citation Format

Share Document