welding residual stress
Recently Published Documents


TOTAL DOCUMENTS

610
(FIVE YEARS 100)

H-INDEX

23
(FIVE YEARS 4)

Author(s):  
Hong-Xiang Zheng ◽  
Yun Luo ◽  
Bao-Zhu Zhang ◽  
Wen-Chun Jiang ◽  
Shan-Tung Tu

Water jet peening is a good potential method to control welding residual stresses. The water jet with elliptical nozzle can improve the treatment efficiency due to its large treatment area. In this article, the water jet velocity and dynamic pressure for different elliptical nozzle dimensions and standoff distances are discussed by numerical simulation. The results show that when the axial distance is 10 mm, the effective impact diameter of the elliptical nozzle a/b=8–12 is about 2 times or more than that of the circular nozzle. The length of the jet core of the elliptical nozzle is only related to the outlet structure and is independent of the inlet pressure. The correlation between the dimensionless core length of the elliptical water jet and its long and short axes is derived. When the ratio of the major axis to the minor axis is between 7 and 13, the core length of the elliptical water jet is 7–7.5 times that of its minor axis. Combining the suitable treatment area and dynamic pressure, the elliptical nozzle with an axis ratio of 8 is recommended to control the welding residual stress. Finally, a new formula for calculating dynamic pressure distribution is proposed for the elliptical nozzle water jet at different stages.


Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7463
Author(s):  
Hongjie Zhang ◽  
Tao Han ◽  
Yong Wang ◽  
Qian Wu

The process optimization and structural safety improvement of the in-service repair welding of the X80 pipeline are very important. In this paper, the temperature, microstructure, and stress distribution were analyzed using the combination of TMM (thermal-metallurgical-mechanical) simulations and the corresponding verification experiments. The effects of the sleeve material strength and the fillet weld size were discussed. The results showed that the fillet weld zone was mainly composed of ferrite and bainite when the material of the sleeve pipe was Q345B. Furthermore, the sleeve pipe’s HAZ (heat affected zone) was dominated by lath martensite, lath bainite, and granular bainite. Moreover, granular bainite and a small amount of ferrite were found in the HAZ of the X80 pipe. It was found that, as the fillet weld size increased, the welding residual stress distribution became more uniform. The hoop stress at weld toe reduced from ~860 MPa of case A to ~680 MPa of case E, and the axial stress at weld toe reduced from ~440 MPa of case A to ~380 MPa of case E. From the viewpoint of welding residual stress, fillet weld size was suggested to be larger than 1.4T. The stress concentration and the stress distribution showed a correlation with the cracking behavior. Weld re-solidification ripples on the weld surface and weld ripples between welding passes or near the weld toe could cause stress concentration and the corresponding crack initiation. Furthermore, when the material of the sleeve pipe changed from Q345B to X80, the high-level tensile stress zone was found to be enlarged. The hoop stress at weld toe increased from ~750 to ~800 MPa, and the axial stress at weld toe increased from ~500 to ~600 MPa. After implementing the new sleeve repair welding process where X80 replaces the material of sleeve pipe, the cracking risk in sleeve pipe will improve. From the perspective of the welding residual stress, it was concluded that the fillet weld size reduction and the sleeve material strength improvement are harmful to in-service welded structures’ safety and integrity.


2021 ◽  
Vol 2083 (2) ◽  
pp. 022075
Author(s):  
Hongjie Zhang ◽  
Tao Han ◽  
Yong Wang ◽  
Bangyu Wang ◽  
Guangxue Chen

Abstract The 25mm DH36 steel was welded by hybrid laser arc welding (HLAW), and a sequence coupled thermal-metallurgical-mechanical (TMM) model was developed based on SYSWELD. The temperature-microstructure-stress fields are predicted by simulation verified by experiment. The ratio between the arc and laser energy showed a significant effect on weld profile. The laser provided the main power and ensured deep penetration, and the arc power showed a dominant effect on the bead width of the hybrid weld during HLAW. For the hybrid welding of a thick-walled plate, the microstructure and thermal cycles varied along with the thickness. The weld profile and microstructure were experimentally characterized. The 3-pass welding procedure produced larger welding residual stress than the 9-pass welding procedure, and the process stability is poorer than the 3-pass welding process. Overall, numerical results matched well with experimental results.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 5980
Author(s):  
Chunliang Mai ◽  
Xue Hu ◽  
Lixin Zhang ◽  
Bao Song ◽  
Xiongfei Zheng

In this paper, based on Simufact Welding finite element analysis software, a numerical simulation of the temperature and residual stress distribution of the weldolet-header multi-layer multi-pass welding process is carried out, and the simulation results are verified through experiments. The experimental results are in good agreement with the numerical simulation results, which proves the validity of the numerical simulation results. Through the results of the numerical simulation, the influence of the welding sequence and interlayer temperature on the temperature and residual stress distribution at different locations of the saddle-shaped weld was studied. The results show that the temperature and residual stress distribution on the header and weldolet are asymmetric, and the high-stress area of the saddle-shaped welded joint always appears at the saddle shoulder or saddle belly position. When the interlayer temperature is 300 °C, the peak residual stress reaches a minimum of 428.35 MPa. Adjusting the welding sequence can change the distribution trend of residual stress. There is no high-stress area on the first welding side of the two-stage welding path-2. The peak values of residual stresses for continuous welding path-1 and two-stage welding path-2 are 428.35 MPa and 434.01 MPa, respectively, which are very close to each other.


2021 ◽  
Vol 144 (1) ◽  
Author(s):  
Seung-Jae Kim ◽  
Eui-Kyun Park ◽  
Hong-Yeol Bae ◽  
Ju-Hee Kim ◽  
Nam-Su Huh ◽  
...  

Abstract This article investigates numerically welding residual stress distributions of a tube with J-groove weld in control rod drive mechanisms of a pressurized nuclear reactor vessel. Parametric study is performed for the effect of the tube location, tube dimensions, and material's yield strength. It is found that residual stresses increase with increasing the inclination angle of the tube, and the up-hill side is the most critical. For thicker tube, residual stresses decrease. For material's yield strength, both axial and hoop residual stresses tend to increase with increasing the yield strength of Alloy 600. Furthermore, axial stresses tend to increase with increasing yield strength of Alloys 82/182.


2021 ◽  
Vol 2045 (1) ◽  
pp. 012029
Author(s):  
L Li ◽  
F H Zheng ◽  
H D Zhang ◽  
Y Q Fu

Abstract In order to study the influence of welding residual stress on the global stability of box section steel column, the simulation of the side effects from the welding process of Q345 box section steel column by ABAQUS thermal-structure coupling analysis was conducted. A temperature-displacement explicit analysis step was established, and the residual stress caused by the temperature difference of the welding specimen was simulated by applying the body heat flux directly to the solid element within the same thickness range of the weld seam and defining the load amplitude; The calculated welding residual stress was taken as the initial defect of the structure and the global stable bearing capacity of the box section steel column was solved by the arc length method. Considering the influence of thickness and welding residual stress on the global stability of box section steel column, the calculation results of 12 finite element models were compared. The results show that under the same body heat flux, the residual stress of steel columns with different thicknesses during welding is different, and the maximum value can reach 791MPa; Under the condition of the same residual stress, the global stability bearing capacity of the box section steel column will also change irregularity with the change of thickness, and the global stability bearing capacity can be reduced by 3.07% compared with that no residual stress.


2021 ◽  
Vol 2 (4) ◽  
pp. 714-727
Author(s):  
Mikihito Hirohata ◽  
Shuhei Nozawa ◽  
Károly Jármai

A heat treatment is effective for reducing the residual stress of the welded structures. A post-weld heat treatment (PWHT) requires a large heating apparatus (furnace). It requires a high energy, a long time, and a high cost. For examining the possibility of cost and energy saving in PWHT work, an economical and mechanical investigation of the local PWHT to stiffened plate members in steel bridges was conducted. The expense of apparatus for the furnace PWHT was 1.5 times higher than that of local PWHT by sheet-type ceramic heaters. When the number of heater units was reduced and were repeatedly used, the expense for the apparatus became lower. However, it took longer to complete the heat treatment than with the furnace PWHT or the local PWHT with full heater units. The thermal elastic-plastic finite element (FE) analysis examined the effect of local PWHT. The tendency of the stress distribution after the local PWHT differed from the welding residual stress or the stress after the furnace PWHT because of the temperature difference between the heated and the non-heated parts of the local PWHT. However, the effect of residual stress relief by the local PWHT could be almost the same as that of the furnace PWHT.


Author(s):  
Mingxiao Shi ◽  
Jiugong Chen ◽  
Jingyong Li ◽  
Weidong Mao ◽  
Shengliang Li ◽  
...  

Author(s):  
Junsang Lee ◽  
Jong Sung Kim ◽  
Bongsang Lee ◽  
Sungwoo Cho ◽  
Dongil Kwon ◽  
...  

AbstractThis study analyzes the effects of post-weld heat treatment (PWHT) on the mechanical properties and microstructures of SA-508 Gr.1a welds and proposes a new PWHT exemption criterion based on nonductile fracture evaluation considering welding residual stress. The welding coupons were prepared with submerged-arc welding, gas-tungsten arc welding, and shielded-metal arc welding, using ferritic steel, SA-508 Gr.1a. The microstructure of the heat-affected zone (HAZ) was analyzed using optical microscopy, electron-back-scatter diffraction and Vickers hardness testing. The mechanical properties of the welds were evaluated by uniaxial tensile test, transverse side bend test, Charpy V-notch impact test and side bend test. Bainite and ferrite structures formed mainly in the HAZ, and the grain size became coarser with proximity to the surface and fusion line. The mechanical properties did not depend strongly on PWHT, weldment thickness or welding techniques, and they satisfied the welding procedure qualification test specified in the ASME Boiler & Pressure Vessel code. Welding residual stresses were considered in assessing structural integrity using nonductile fracture evaluation. A margin of safety against nonductile fracture with residual stress was calculated for Korean Standard Nuclear Power Plant steam-generator welds, using its design parameters and operating conditions, and this safety margin is suggested as an acceptance criterion for residual stress for exemption from PWHT. Graphic abstract


Sign in / Sign up

Export Citation Format

Share Document