scholarly journals Aeroelastic Analysis of Rotor Blades Using Three Dimensional Flexible Multibody Dynamic Analysis

Author(s):  
Manabendra Das ◽  
Erdogan Madenci ◽  
Friedrich Straub
Author(s):  
W. Fan ◽  
W. D. Zhu

An accurate singularity-free formulation of a three-dimensional curved Euler-Bernoulli beam with large deformations and large rotations is developed for flexible multibody dynamic analysis. Euler parameters are used to characterize orientations of cross-sections of the beam, which can resolve the singularity problem caused by Euler angles. The position of the centroid line of the beam is integrated from its slope, and position vectors of nodes of beam elements are no longer used as generalized coordinates. Hence, the number of generalized coordinates for each node is minimized. Euler parameters instead of position vectors are interpolated in the current formulation, and a new C1-continuous interpolation function is developed, which can greatly reduce the number of elements. Governing equations of the beam and constraint equations are derived using Lagrange’s equations for systems with constraints, which are solved by the generalized-α method for resulting differential-algebraic equations. The current formulation can be used to calculate static and dynamic problems of straight and curved Euler-Bernoulli beams under arbitrary concentrated and distributed forces. The stiffness matrix and generalized force in the current formulation are much simpler than those in the geometrically exact beam formulation (GEBF) and absolute node coordinate formulation (ANCF), which makes it more suitable for static equilibrium problems. Numerical simulations show that the current formulation can achieve the same accuracy as the GEBF and ANCF with much fewer elements and generalized coordinates.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
W. Fan ◽  
W. D. Zhu

An accurate singularity-free formulation of a three-dimensional curved Euler–Bernoulli beam with large deformations and large rotations is developed for flexible multibody dynamic analysis. Euler parameters are used to characterize orientations of cross sections of the beam, which can resolve the singularity problem caused by Euler angles. The position of the centroid line of the beam is integrated from its slope, and position vectors of nodes of beam elements are no longer used as generalized coordinates. Hence, the number of generalized coordinates for each node is minimized. Euler parameters instead of position vectors are interpolated in the current formulation, and a new C1-continuous interpolation function is developed, which can greatly reduce the number of elements. Governing equations of the beam and constraint equations are derived using Lagrange's equations for systems with constraints, which are solved by the generalized- α method for resulting differential-algebraic equations (DAEs). The current formulation can be used to calculate static and dynamic problems of straight and curved Euler–Bernoulli beams under arbitrary, concentrated and distributed forces. The stiffness matrix and generalized force in the current formulation are much simpler than those in the geometrically exact beam formulation (GEBF) and absolute node coordinate formulation (ANCF), which makes it more suitable for static equilibrium problems. Numerical simulations show that the current formulation can achieve the same accuracy as the GEBF and ANCF with much fewer elements and generalized coordinates.


2010 ◽  
Vol 24 (13) ◽  
pp. 1475-1478 ◽  
Author(s):  
SEUNG-JAE YOO ◽  
MIN-SOO JEONG ◽  
IN LEE

Aeroelastic analysis of hingeless rotor blades in hover was performed. Large deflection beam theory was applied to analyze blade motions with effects of geometric structural nonlinearity. Aerodynamic loads for aeroelastic analysis were calculated through a three-dimensional aerodynamic model which is based on the unsteady vortex lattice method. Wake geometry was described using a time-marching free-wake method. Lead-lag damping ratio and frequency were calculated to evaluate aeroelastic stability of hingeless rotor system. Numerical results of aeroelastic analysis for hingeless rotor blades were presented and compared with results based on experimental data and two-dimensional quasi-steady strip theory in which uniform inflow model was used. It was shown that wakes significantly affect the steady-state deflections and aeroelastic stability.


Author(s):  
Yoon-Ji Lim ◽  
Young-Eun Oh ◽  
Jin-Ho Roh ◽  
Soo-Yong Lee ◽  
Hwa-Young Jung ◽  
...  

2019 ◽  
Vol 91 (8) ◽  
pp. 1113-1121
Author(s):  
Mohammadreza Amoozgar ◽  
Hossein Shahverdi

PurposeThis paper aims to develop a new approach for aeroelastic analysis of hingeless rotor blades.Design/methodology/approachThe aeroelastic approach developed here is based on the geometrically exact fully intrinsic beam equations and three-dimensional unsteady aerodynamics.FindingsThe developed approach is accurate, fast and very useful in rotorcraft aeroelastic analysis.Originality/valueThis beam formulation has been never combined with three-dimensional aerodynamic model to be used for aeroelastic analysis of blades. In addition, it is possible to handle the composite blades, as well as blades with initial curvatures and twist with this proposed formulation.


Sign in / Sign up

Export Citation Format

Share Document