scholarly journals Extension of Analytical Target Cascading Using Augmented Lagrangian Coordination for Multidisciplinary Design Optimization

Author(s):  
S. Tosserams ◽  
M. Kokkolaras ◽  
L. F. P. Etman ◽  
J. E. Rooda
2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ping Jiang ◽  
Jianzhuang Wang ◽  
Qi Zhou ◽  
Xiaolin Zhang

Multidisciplinary design optimization (MDO) has been applied widely in the design of complex engineering systems. To ease MDO problems, analytical target cascading (ATC) organizes MDO process into multilevels according to the components of engineering systems, which provides a promising way to deal with MDO problems. ATC adopts a coordination strategy to coordinate the couplings between two adjacent levels in the design optimization process; however, existing coordination strategies in ATC face the obstacles of complicated coordination process and heavy computation cost. In order to conquer this problem, a quadratic exterior penalty function (QEPF) based ATC (QEPF-ATC) approach is proposed, where QEPF is adopted as the coordination strategy. Moreover, approximate models are adopted widely to replace the expensive simulation models in MDO; a QEPF-ATC and Kriging model combined approach is further proposed to deal with MDO problems, owing to the comprehensive performance, high approximation accuracy, and robustness of Kriging model. Finally, the geometric programming and reducer design cases are given to validate the applicability and efficiency of the proposed approach.


2012 ◽  
Vol 195-196 ◽  
pp. 801-806
Author(s):  
Bei Bei Wu ◽  
Hai Huang

For the multidisciplinary design optimization (MDO) question of autonomous rendezvous spacecraft, first, the analysis model and coupling relations of payload, propulsion and structure discipline are discussed; then the updated analytical target cascading (UATC) method is introduced and compared with the widely used collaborative optimization (CO). Results prove that the UATC method requires 54.8% fewer average subspace iterations than the CO and is more efficient for practical engineering MDO problem. Finally, based on the UATC method, a MDO problem of autonomous rendezvous spacecraft is solved and gets reasonable and effective results. The process proves the effectiveness of UATC method solving spacecraft MDO problem.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Wenshan Wang ◽  
Vincent Y. Blouin ◽  
Melissa K. Gardenghi ◽  
Georges M. Fadel ◽  
Margaret M. Wiecek ◽  
...  

Analytical target cascading (ATC), a hierarchical, multilevel, multidisciplinary coordination method, has proven to be an effective decomposition approach for large-scale engineering optimization problems. In recent years, augmented Lagrangian relaxation methods have received renewed interest as dual update methods for solving ATC decomposed problems. These problems can be solved using the subgradient optimization algorithm, the application of which includes three schemes for updating dual variables. To address the convergence efficiency disadvantages of the existing dual update schemes, this paper investigates two new schemes, the linear and the proximal cutting plane methods, which are implemented in conjunction with augmented Lagrangian coordination for ATC-decomposed problems. Three nonconvex nonlinear example problems are used to show that these two cutting plane methods can significantly reduce the number of iterations and the number of function evaluations when compared to the traditional subgradient update methods. In addition, these methods are also compared to the method of multipliers and its variants, showing similar performance.


2012 ◽  
Vol 544 ◽  
pp. 49-54 ◽  
Author(s):  
Jun Zheng ◽  
Hao Bo Qiu ◽  
Xiao Lin Zhang

ATC provides a systematic approach in solving decomposed large scale systems that has solvable subsystems. However, complex engineering system usually has a high computational cost , which result in limiting real-life applications of ATC based on high-fidelity simulation models. To address these problems, this paper aims to develop an efficient approximation model building techniques under the analytical target cascading (ATC) framework, to reduce computational cost associated with multidisciplinary design optimization problems based on high-fidelity simulations. An approximation model building techniques is proposed: approximations in the subsystem level are based on variable-fidelity modeling (interaction of low- and high-fidelity models). The variable-fidelity modeling consists of computationally efficient simplified models (low-fidelity) and expensive detailed (high-fidelity) models. The effectiveness of the method for modeling under the ATC framework using variable-fidelity models is studied. Overall results show the methods introduced in this paper provide an effective way of improving computational efficiency of the ATC method based on variable-fidelity simulation models.


2010 ◽  
Vol 132 (3) ◽  
Author(s):  
Jeongwoo Han ◽  
Panos Y. Papalambros

Analytical target cascading (ATC) is a multidisciplinary design optimization method for multilevel hierarchical systems. To improve computational efficiency, especially for problems under uncertainty or with strong monotonicity, a sequential linear programming (SLP) algorithm was previously employed as an alternate coordination strategy to solve ATC and probabilistic ATC problems. The SLP implementation utilizes L∞ norms to maintain the linearity of SLP subsequences. This note offers a proof that there exists a set of weights such that the ATC algorithm converges when L∞ norms are used. Examples are also provided to illustrate the effectiveness of using L∞ norms as a penalty function to maintain the formulation linear and differentiable. The examples show that the proposed method provides more robust results for linearized ATC problems due to the robustness of the linear programming solver.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Meng Xu ◽  
Georges Fadel ◽  
Margaret M. Wiecek

The augmented Lagrangian coordination (ALC), as an effective coordination method for decomposition-based optimization, offers significant flexibility by providing different variants when solving nonhierarchically decomposed problems. In this paper, these ALC variants are analyzed with respect to the number of levels and multipliers, and the resulting advantages and disadvantages are explored through numerical tests. The efficiency, accuracy, and parallelism of three ALC variants (distributed ALC, centralized ALC, and analytical target cascading (ATC) extended by ALC) are discussed and compared. Furthermore, the dual residual theory for the centralized ALC is extended to the distributed ALC, and a new flexible nonmonotone weight update is proposed and tested. Numerical tests show that the proposed update effectively improves the accuracy and robustness of the distributed ALC on a benchmark engineering test problem.


Sign in / Sign up

Export Citation Format

Share Document