Cutting Plane Methods for Analytical Target Cascading With Augmented Lagrangian Coordination

2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Wenshan Wang ◽  
Vincent Y. Blouin ◽  
Melissa K. Gardenghi ◽  
Georges M. Fadel ◽  
Margaret M. Wiecek ◽  
...  

Analytical target cascading (ATC), a hierarchical, multilevel, multidisciplinary coordination method, has proven to be an effective decomposition approach for large-scale engineering optimization problems. In recent years, augmented Lagrangian relaxation methods have received renewed interest as dual update methods for solving ATC decomposed problems. These problems can be solved using the subgradient optimization algorithm, the application of which includes three schemes for updating dual variables. To address the convergence efficiency disadvantages of the existing dual update schemes, this paper investigates two new schemes, the linear and the proximal cutting plane methods, which are implemented in conjunction with augmented Lagrangian coordination for ATC-decomposed problems. Three nonconvex nonlinear example problems are used to show that these two cutting plane methods can significantly reduce the number of iterations and the number of function evaluations when compared to the traditional subgradient update methods. In addition, these methods are also compared to the method of multipliers and its variants, showing similar performance.

Author(s):  
Wenshan Wang ◽  
Vincent Y. Blouin ◽  
Melissa Gardenghi ◽  
Margaret M. Wiecek ◽  
Georges M. Fadel ◽  
...  

Various decomposition and coordination methodologies for solving large-scale system design problems have been developed and studied during the past few decades. However, there is generally no guarantee that they will converge to the expected optimum design under general assumptions. Those with proven convergence often have restricted hypotheses or a prohibitive cost related to the required computational effort. Therefore there is still a need for improved, mathematically grounded, decomposition and coordination techniques that will achieve convergence while remaining robust, flexible and easy to implement. In recent years, classical Lagrangian and augmented Lagrangian methods have received renewed interest when applied to decomposed design problems. Some methods are implemented using a subgradient optimization algorithm whose performance is highly dependent on the type of dual update of the iterative process. This paper reports on the implementation of a cutting plane approach in conjunction with Lagrangian coordination and the comparison of its performance with other subgradient update methods. The method is demonstrated on design problems that are decomposable according to the analytic target cascading (ATC) scheme.


2008 ◽  
Vol 130 (5) ◽  
Author(s):  
Yanjing Li ◽  
Zhaosong Lu ◽  
Jeremy J. Michalek

Analytical target cascading (ATC) is an effective decomposition approach used for engineering design optimization problems that have hierarchical structures. With ATC, the overall system is split into subsystems, which are solved separately and coordinated via target/response consistency constraints. As parallel computing becomes more common, it is desirable to have separable subproblems in ATC so that each subproblem can be solved concurrently to increase computational throughput. In this paper, we first examine existing ATC methods, providing an alternative to existing nested coordination schemes by using the block coordinate descent method (BCD). Then we apply diagonal quadratic approximation (DQA) by linearizing the cross term of the augmented Lagrangian function to create separable subproblems. Local and global convergence proofs are described for this method. To further reduce overall computational cost, we introduce the truncated DQA (TDQA) method, which limits the number of inner loop iterations of DQA. These two new methods are empirically compared to existing methods using test problems from the literature. Results show that computational cost of nested loop methods is reduced by using BCD, and generally the computational cost of the truncated methods is superior to the nested loop methods with lower overall computational cost than the best previously reported results.


2017 ◽  
Vol 139 (3) ◽  
Author(s):  
Meng Xu ◽  
Georges Fadel ◽  
Margaret M. Wiecek

The augmented Lagrangian coordination (ALC), as an effective coordination method for decomposition-based optimization, offers significant flexibility by providing different variants when solving nonhierarchically decomposed problems. In this paper, these ALC variants are analyzed with respect to the number of levels and multipliers, and the resulting advantages and disadvantages are explored through numerical tests. The efficiency, accuracy, and parallelism of three ALC variants (distributed ALC, centralized ALC, and analytical target cascading (ATC) extended by ALC) are discussed and compared. Furthermore, the dual residual theory for the centralized ALC is extended to the distributed ALC, and a new flexible nonmonotone weight update is proposed and tested. Numerical tests show that the proposed update effectively improves the accuracy and robustness of the distributed ALC on a benchmark engineering test problem.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Xiang Li ◽  
Xiaonpeng Wang ◽  
Houjun Zhang ◽  
Yuheng Guo

In the previous reports, analytical target cascading (ATC) is generally applied to product optimization. In this paper, the application area of ATC is expanded to trajectory optimization. Direct collocation method is utilized to convert a trajectory optimization into a nonlinear programing (NLP) problem. The converted NLP is a large-scale problem with sparse matrix of functional dependence table (FDT) suitable for the application of ATC. Three numerical case studies are provided to show the effects of ATC in solving trajectory optimization problems.


Author(s):  
Yanjing Li ◽  
Zhaosong Lu ◽  
Jeremy J. Michalek

Analytical Target Cascading (ATC) is an effective decomposition approach used for engineering design optimization problems that have hierarchical structures. With ATC, the overall system is split into subsystems, which are solved separately and coordinated via target/response consistency constraints. As parallel computing becomes more common, it is desirable to have separable subproblems in ATC so that each subproblem can be solved concurrently to increase computational throughput. In this paper, we first examine existing ATC methods, providing an alternative to existing nested coordination schemes by using the block coordinate descent method (BCD). Then we apply diagonal quadratic approximation (DQA) by linearizing the cross term of the augmented Lagrangian function to create separable subproblems. Local and global convergence proofs are described for this method. To further reduce overall computational cost, we introduce the truncated DQA (TDQA) method that limits the number of inner loop iterations of DQA. These two new methods are empirically compared to existing methods using test problems from the literature. Results show that computational cost of nested loop methods is reduced by using BCD and generally the computational cost of the truncated methods, TDQA and ALAD, are superior to other nested loop methods with lower overall computational cost than the best previously reported results.


Sign in / Sign up

Export Citation Format

Share Document